Adaptive coded aperture design for compressive computed tomography

欠采样 编码孔径 压缩传感 光圈(计算机存储器) 过采样 迭代重建 采样(信号处理) 数学 扫描仪 计算机科学 算法 计算机视觉 人工智能 光学 物理 探测器 声学 带宽(计算) 滤波器(信号处理) 计算机网络
作者
Andrés Jerez,Miguel Márquez,Henry Argüello
出处
期刊:Journal of Computational and Applied Mathematics [Elsevier BV]
卷期号:384: 113174-113174 被引量:3
标识
DOI:10.1016/j.cam.2020.113174
摘要

Computed tomography (CT) is a non-invasive scanning technique that allows the visualization of the internal structure of an object from X-ray projections. These projections are frequently affected by different artifacts, including the beam hardening (BH) effect, among others. The BH effect is produced by high X-ray attenuation due to dense elements inside the object of interest. Traditionally, BH artifacts are addressed by applying oversampling techniques. However, the prolonged X-ray exposition represents a risk to the patient's health. To overcome this drawback, undersampling CT approaches have been developed, e.g., the coded aperture computed tomography (CA-CT) which is based on the compressive sensing (CS) theory. Nevertheless, CA-CT has not been extended for addressing the BH effect. This work proposes an adaptive coded aperture sensing methodology based on a fan-beam X-ray architecture to reduce the BH artifacts. The proposed methodology uses an initial sampling to identify high-density elements and an adaptive sampling to avoid the acquisition of those dense elements. Specifically, the proposed method is summarized into three main steps: (i) sensing matrix analysis via Gershgorin theorem; (ii) coded aperture optimization criteria based on view angles, pixels of the object, and dense elements; (iii) coded aperture optimization algorithm through the sensing matrix analysis and the proposed optimization criteria. Simulation results show that the reconstructed images by the proposed adaptive methodology gain up to 12[dB] in averaged peak signal-to-noise ratio (PSNR) compared to the traditional CA-CT approach which implements non-designed coded apertures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助nn采纳,获得10
1秒前
在下雨发布了新的文献求助10
1秒前
Orange应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
勤劳冰烟应助科研通管家采纳,获得10
4秒前
风清扬应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
6秒前
所所应助优雅冰淇淋采纳,获得10
6秒前
6秒前
7秒前
HHHHTTTT完成签到,获得积分10
7秒前
yznfly应助爱听歌的老九采纳,获得30
8秒前
9秒前
AEROU完成签到 ,获得积分10
11秒前
健忘芷珊完成签到,获得积分10
12秒前
shinn发布了新的文献求助10
13秒前
彭于晏应助HK采纳,获得10
13秒前
想吃糖葫芦完成签到 ,获得积分10
13秒前
秦萍发布了新的文献求助10
13秒前
桐桐应助专注的可乐采纳,获得10
14秒前
14秒前
14秒前
14秒前
一一发布了新的文献求助10
15秒前
15秒前
sarah发布了新的文献求助10
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
24秒前
负责啤酒完成签到,获得积分10
25秒前
25秒前
26秒前
华仔应助ATOM采纳,获得10
27秒前
丰富的土豆应助背后瑾瑜采纳,获得10
29秒前
LoGokkk发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952404
求助须知:如何正确求助?哪些是违规求助? 3497780
关于积分的说明 11088843
捐赠科研通 3228383
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303