A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants

随机森林 集合预报 支持向量机 最大熵原理 集成学习 计算机科学 回归 环境生态位模型 气候变化 广义线性模型 统计 机器学习 人工智能 生态学 数学 栖息地 生态位 生物
作者
Emad Kaky,Victoria Nolan,Abdulaziz S. Alatawi,Francis Gilbert
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:60: 101150-101150 被引量:258
标识
DOI:10.1016/j.ecoinf.2020.101150
摘要

Understanding the relationship between the geographical distribution of taxa and their environmental conditions is a key concept in ecology and conservation. The use of ensemble modelling methods for species distribution modelling (SDM) have been promoted over single algorithms such as Maximum Entropy (MaxEnt). Nevertheless, we suggest that in cases where data, technical support or computational power are limited, for example in developing countries, single algorithm methods produce robust and accurate distribution maps. We fit SDMs for 114 Egyptian medicinal plant species (nearly all native) with a total of 14,396 occurrence points. The predictive performances of eight single-algorithm methods (maxent, random forest (rf), support-vector machine (svm), maxlike, boosted regression trees (brt), classification and regression trees (cart), flexible discriminant analysis (fda) and generalised linear models (glm)) were compared to an ensemble modelling approach combining all eight algorithms. Predictions were based originally on the current climate, and then projected into the future time slice of 2050 based on four alternate climate change scenarios (A2a and B2a for CMIP3 and RCP 2.6 and RCP 8.5 for CMIP5). Ensemble modelling, MaxEnt and rf achieved the highest predictive performances based on AUC and TSS, while svm and cart had the poorest performance. There is high similarity in habitat suitability between MaxEnt and ensemble predictive maps for both current and future emission scenarios, but lower similarity between rf and ensemble, or rf and MaxEnt. We conclude that single-algorithm modelling methods, particularly MaxEnt, are capable of producing distribution maps of comparable accuracy to ensemble methods. Furthermore, the ease of use, reduced computational time and simplicity of methods like MaxEnt provides support for their use in scenarios when the choice of modelling methods, knowledge or computational power is limited but the need for robust and accurate conservation predictions is urgent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助云轩采纳,获得10
刚刚
1秒前
王侯将相完成签到,获得积分10
1秒前
赘婿应助Hollow采纳,获得10
1秒前
lierking应助个性无声采纳,获得10
1秒前
1秒前
kk完成签到,获得积分20
1秒前
2秒前
2秒前
2秒前
liangliang完成签到,获得积分10
3秒前
3秒前
林白完成签到,获得积分10
3秒前
4秒前
荔枝凉完成签到,获得积分10
4秒前
可爱的函函应助啦啦啦采纳,获得10
4秒前
littlequiet完成签到,获得积分10
4秒前
酆城发布了新的文献求助10
5秒前
5秒前
5秒前
Singularity应助lorentzh采纳,获得10
5秒前
7秒前
领导范儿应助smart采纳,获得10
7秒前
wxy完成签到,获得积分20
7秒前
妍妍发布了新的文献求助10
8秒前
Akim应助yoneyamai采纳,获得10
8秒前
LL发布了新的文献求助10
8秒前
journey完成签到 ,获得积分10
8秒前
harri发布了新的文献求助10
9秒前
9秒前
25695完成签到,获得积分20
9秒前
vicar发布了新的文献求助10
9秒前
9秒前
坐忘道完成签到 ,获得积分10
10秒前
littlequiet发布了新的文献求助10
10秒前
xjy完成签到,获得积分10
11秒前
小菡菡发布了新的文献求助10
12秒前
研友_VZG7GZ应助浮浮世世采纳,获得10
13秒前
Jurica发布了新的文献求助10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497551
关于积分的说明 11088037
捐赠科研通 3228178
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801230