亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants

随机森林 集合预报 支持向量机 最大熵原理 集成学习 计算机科学 回归 环境生态位模型 气候变化 广义线性模型 物种分布 统计 机器学习 人工智能 生态学 数学 栖息地 生态位 生物
作者
Emad Kaky,Victoria Nolan,Abdulaziz S. Alatawi,Francis Gilbert
出处
期刊:Ecological Informatics [Elsevier]
卷期号:60: 101150-101150 被引量:348
标识
DOI:10.1016/j.ecoinf.2020.101150
摘要

Understanding the relationship between the geographical distribution of taxa and their environmental conditions is a key concept in ecology and conservation. The use of ensemble modelling methods for species distribution modelling (SDM) have been promoted over single algorithms such as Maximum Entropy (MaxEnt). Nevertheless, we suggest that in cases where data, technical support or computational power are limited, for example in developing countries, single algorithm methods produce robust and accurate distribution maps. We fit SDMs for 114 Egyptian medicinal plant species (nearly all native) with a total of 14,396 occurrence points. The predictive performances of eight single-algorithm methods (maxent, random forest (rf), support-vector machine (svm), maxlike, boosted regression trees (brt), classification and regression trees (cart), flexible discriminant analysis (fda) and generalised linear models (glm)) were compared to an ensemble modelling approach combining all eight algorithms. Predictions were based originally on the current climate, and then projected into the future time slice of 2050 based on four alternate climate change scenarios (A2a and B2a for CMIP3 and RCP 2.6 and RCP 8.5 for CMIP5). Ensemble modelling, MaxEnt and rf achieved the highest predictive performances based on AUC and TSS, while svm and cart had the poorest performance. There is high similarity in habitat suitability between MaxEnt and ensemble predictive maps for both current and future emission scenarios, but lower similarity between rf and ensemble, or rf and MaxEnt. We conclude that single-algorithm modelling methods, particularly MaxEnt, are capable of producing distribution maps of comparable accuracy to ensemble methods. Furthermore, the ease of use, reduced computational time and simplicity of methods like MaxEnt provides support for their use in scenarios when the choice of modelling methods, knowledge or computational power is limited but the need for robust and accurate conservation predictions is urgent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助leisure采纳,获得10
5秒前
AX完成签到,获得积分10
11秒前
003发布了新的文献求助20
16秒前
23秒前
leisure发布了新的文献求助10
29秒前
彭于晏应助sujingbo采纳,获得10
39秒前
1分钟前
sujingbo发布了新的文献求助10
1分钟前
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
山与发布了新的文献求助10
1分钟前
爆米花应助山与采纳,获得10
1分钟前
古铜完成签到 ,获得积分10
1分钟前
1分钟前
ding应助斿斿采纳,获得10
2分钟前
2分钟前
2分钟前
Iridescent发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
宣若剑发布了新的文献求助10
2分钟前
Murphy完成签到,获得积分10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
mm应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
田様应助科研启动采纳,获得30
3分钟前
3分钟前
你嵙这个期刊没买完成签到,获得积分10
3分钟前
li发布了新的文献求助20
3分钟前
li完成签到,获得积分20
3分钟前
3分钟前
嘻嘻哈哈完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463313
求助须知:如何正确求助?哪些是违规求助? 4568049
关于积分的说明 14312357
捐赠科研通 4493975
什么是DOI,文献DOI怎么找? 2462050
邀请新用户注册赠送积分活动 1450987
关于科研通互助平台的介绍 1426221