A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants

随机森林 集合预报 支持向量机 最大熵原理 集成学习 计算机科学 回归 环境生态位模型 气候变化 广义线性模型 统计 机器学习 人工智能 生态学 数学 栖息地 生态位 生物
作者
Emad Kaky,Victoria Nolan,Abdulaziz S. Alatawi,Francis Gilbert
出处
期刊:Ecological Informatics [Elsevier]
卷期号:60: 101150-101150 被引量:258
标识
DOI:10.1016/j.ecoinf.2020.101150
摘要

Understanding the relationship between the geographical distribution of taxa and their environmental conditions is a key concept in ecology and conservation. The use of ensemble modelling methods for species distribution modelling (SDM) have been promoted over single algorithms such as Maximum Entropy (MaxEnt). Nevertheless, we suggest that in cases where data, technical support or computational power are limited, for example in developing countries, single algorithm methods produce robust and accurate distribution maps. We fit SDMs for 114 Egyptian medicinal plant species (nearly all native) with a total of 14,396 occurrence points. The predictive performances of eight single-algorithm methods (maxent, random forest (rf), support-vector machine (svm), maxlike, boosted regression trees (brt), classification and regression trees (cart), flexible discriminant analysis (fda) and generalised linear models (glm)) were compared to an ensemble modelling approach combining all eight algorithms. Predictions were based originally on the current climate, and then projected into the future time slice of 2050 based on four alternate climate change scenarios (A2a and B2a for CMIP3 and RCP 2.6 and RCP 8.5 for CMIP5). Ensemble modelling, MaxEnt and rf achieved the highest predictive performances based on AUC and TSS, while svm and cart had the poorest performance. There is high similarity in habitat suitability between MaxEnt and ensemble predictive maps for both current and future emission scenarios, but lower similarity between rf and ensemble, or rf and MaxEnt. We conclude that single-algorithm modelling methods, particularly MaxEnt, are capable of producing distribution maps of comparable accuracy to ensemble methods. Furthermore, the ease of use, reduced computational time and simplicity of methods like MaxEnt provides support for their use in scenarios when the choice of modelling methods, knowledge or computational power is limited but the need for robust and accurate conservation predictions is urgent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彪行天下完成签到,获得积分10
刚刚
喵喵完成签到,获得积分10
刚刚
烟花应助lwj6855采纳,获得10
1秒前
桐桐应助粉煤灰采纳,获得10
1秒前
自由的凛完成签到,获得积分10
1秒前
1秒前
1秒前
欢呼阁完成签到,获得积分10
2秒前
书俭完成签到,获得积分10
2秒前
白马二师兄完成签到,获得积分10
2秒前
孟严青发布了新的文献求助10
3秒前
可燃冰完成签到,获得积分10
3秒前
激昂的千萍完成签到 ,获得积分10
3秒前
zwenng完成签到,获得积分10
3秒前
沉静的晓蓝完成签到 ,获得积分20
3秒前
Yim发布了新的文献求助10
4秒前
mmyhn应助柠檬泡芙采纳,获得20
4秒前
欧阳完成签到,获得积分10
5秒前
幸运星完成签到,获得积分10
5秒前
5秒前
浅香千雪发布了新的文献求助10
5秒前
orixero应助jason采纳,获得10
6秒前
竹音完成签到,获得积分10
6秒前
平常天佑完成签到,获得积分10
7秒前
7秒前
adamchris完成签到,获得积分10
7秒前
建安发布了新的文献求助10
7秒前
8秒前
L_Gary完成签到 ,获得积分10
8秒前
8秒前
和谐的饼干完成签到,获得积分10
8秒前
小蘑菇应助紫杉采纳,获得20
9秒前
虚幻谷波完成签到,获得积分10
9秒前
青蛙十字绣00700完成签到,获得积分10
9秒前
跳跃的电话完成签到,获得积分10
9秒前
starofjlu应助坦率的依丝采纳,获得10
9秒前
锌小子完成签到,获得积分10
10秒前
路寻完成签到 ,获得积分10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150871
求助须知:如何正确求助?哪些是违规求助? 2802403
关于积分的说明 7847692
捐赠科研通 2459732
什么是DOI,文献DOI怎么找? 1309322
科研通“疑难数据库(出版商)”最低求助积分说明 628884
版权声明 601757