论证(复杂分析)
计算机科学
判决
任务(项目管理)
事件(粒子物理)
自然语言处理
人工智能
词(群论)
基线(sea)
序列(生物学)
机器学习
数学
生物化学
化学
物理
量子力学
几何学
管理
海洋学
生物
经济
遗传学
地质学
作者
Zhisong Zhang,Xiangzhen Kong,Zhengzhong Liu,Xuezhe Ma,Eduard Hovy
标识
DOI:10.18653/v1/2020.acl-main.667
摘要
In this work, we explore the implicit event argument detection task, which studies event arguments beyond sentence boundaries. The addition of cross-sentence argument candidates imposes great challenges for modeling. To reduce the number of candidates, we adopt a two-step approach, decomposing the problem into two sub-problems: argument head-word detection and head-to-span expansion. Evaluated on the recent RAMS dataset (Ebner et al., 2020), our model achieves overall better performance than a strong sequence labeling baseline. We further provide detailed error analysis, presenting where the model mainly makes errors and indicating directions for future improvements. It remains a challenge to detect implicit arguments, calling for more future work of document-level modeling for this task.
科研通智能强力驱动
Strongly Powered by AbleSci AI