KGNN: Knowledge Graph Neural Network for Drug-Drug Interaction Prediction

计算机科学 知识图 嵌入 图嵌入 代表(政治) 人工智能 人工神经网络 机器学习 图形 数据挖掘 理论计算机科学 政治 政治学 法学
作者
Xuan Lin,Zhe Quan,Zhijie Wang,Tengfei Ma,Xiangxiang Zeng
出处
期刊:International Joint Conference on Artificial Intelligence 卷期号:: 2739-2745 被引量:227
标识
DOI:10.24963/ijcai.2020/380
摘要

Drug-drug interaction (DDI) prediction is a challenging problem in pharmacology and clinical application, and effectively identifying potential DDIs during clinical trials is critical for patients and society. Most of existing computational models with AI techniques often concentrate on integrating multiple data sources and combining popular embedding methods together. Yet, researchers pay less attention to the potential correlations between drug and other entities such as targets and genes. Moreover, recent studies also adopted knowledge graph (KG) for DDI prediction. Yet, this line of methods learn node latent embedding directly, but they are limited in obtaining the rich neighborhood information of each entity in the KG. To address the above limitations, we propose an end-to-end framework, called Knowledge Graph Neural Network (KGNN), to resolve the DDI prediction. Our framework can effectively capture drug and its potential neighborhoods by mining their associated relations in KG. To extract both high-order structures and semantic relations of the KG, we learn from the neighborhoods for each entity in the KG as their local receptive, and then integrate neighborhood information with bias from representation of the current entity. This way, the receptive field can be naturally extended to multiple hops away to model high-order topological information and to obtain drugs potential long-distance correlations. We have implemented our method and conducted experiments based on several widely-used datasets. Empirical results show that KGNN outperforms the classic and state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助酱油恒采纳,获得10
刚刚
1秒前
NOBODY完成签到,获得积分10
1秒前
慕青应助醋醋采纳,获得10
1秒前
XXJJQ完成签到,获得积分10
1秒前
1秒前
西叶发布了新的文献求助10
2秒前
小六完成签到,获得积分10
2秒前
3秒前
Jasper应助SI采纳,获得10
5秒前
雪白世倌完成签到,获得积分10
5秒前
6秒前
邱寻绿发布了新的文献求助10
6秒前
8秒前
8秒前
dacongming发布了新的文献求助10
8秒前
上官若男应助武雨寒采纳,获得10
9秒前
木木杉完成签到 ,获得积分10
9秒前
9秒前
JXXX发布了新的文献求助10
11秒前
小月大王万万岁完成签到 ,获得积分10
11秒前
12秒前
12秒前
醋醋发布了新的文献求助10
15秒前
邱寻绿完成签到,获得积分10
15秒前
16秒前
16秒前
CipherSage应助辣辣采纳,获得10
16秒前
16秒前
小梦完成签到,获得积分10
17秒前
吕健发布了新的文献求助10
17秒前
17秒前
KEHUGE发布了新的文献求助10
21秒前
123完成签到,获得积分20
22秒前
23秒前
乐观寻绿应助清脆摩托采纳,获得10
23秒前
24秒前
25秒前
搜集达人应助沉静怜蕾采纳,获得30
29秒前
CooperLI发布了新的文献求助10
30秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463136
求助须知:如何正确求助?哪些是违规求助? 3056553
关于积分的说明 9052821
捐赠科研通 2746441
什么是DOI,文献DOI怎么找? 1506928
科研通“疑难数据库(出版商)”最低求助积分说明 696226
邀请新用户注册赠送积分活动 695808