Assessment and Combination of SMAP and Sentinel-1A/B-Derived Soil Moisture Estimates With Land Surface Model Outputs in the Mid-Atlantic Coastal Plain, USA

环境科学 辐射计 遥感 含水量 散射计 气象学 地质学 雷达 计算机科学 物理 岩土工程 电信
作者
Hyunglok Kim,Sangchul Lee,Michael H. Cosh,Venkat Lakshmi,Yonghwan Kwon,Gregory W. McCarty
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (2): 991-1011 被引量:4
标识
DOI:10.1109/tgrs.2020.2991665
摘要

Prediction of large-scale water-related natural disasters such as droughts, floods, wildfires, landslides, and dust outbreaks can benefit from the high spatial resolution soil moisture (SM) data of satellite and modeled products because antecedent SM conditions in the topsoil layer govern the partitioning of precipitation into infiltration and runoff. SM data retrieved from Soil Moisture Active Passive (SMAP) have proved to be an effective method of monitoring SM content at different spatial resolutions: 1) radiometer-based product gridded at 36 km; 2) radiometer-only enhanced posting product gridded at 9 km; and 3) SMAP/Sentinel-1A/B products at 3 and 1 km. In this article, we focused on 9-, 3-, and 1-km SM products: three products were validated against in situ data using conventional and triple collocation analysis (TCA) statistics and were then merged with a Noah-Multiparameterization version-3.6 (NoahMP36) land surface model (LSM). An exponential filter and a cumulative density function (CDF) were applied for further evaluation of the three SM products, and the maximize-R method was applied to combine SMAP and NoahMP36 SM data. CDF-matched 9-, 3-, and 1-km SMAP SM data showed reliable performance: R and ubRMSD values of the CDF-matched SMAP products were 0.658, 0.626, and 0.570 and 0.049, 0.053, and 0.055 m 3 /m 3 , respectively. When SMAP and NoahMP36 were combined, the R-values for the 9-, 3-, and 1-km SMAP SM data were greatly improved: R-values were 0.825, 0.804, and 0.795, and ubRMSDs were 0.034, 0.036, and 0.037 m 3 /m 3 , respectively. These results indicate the potential uses of SMAP/Sentinel data for improving regional-scale SM estimates and for creating further applications of LSMs with improved accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
tengfei完成签到,获得积分10
2秒前
2秒前
DDDD发布了新的文献求助10
4秒前
陆程文完成签到,获得积分10
4秒前
4秒前
霞俊杰完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
Awei完成签到,获得积分10
5秒前
天天快乐应助牛贝贝采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
BowieHuang应助Ymir采纳,获得40
7秒前
7秒前
NexusExplorer应助1101592875采纳,获得10
7秒前
付研琪发布了新的文献求助10
7秒前
花灯王子完成签到,获得积分10
8秒前
Lqian_Yu完成签到 ,获得积分10
8秒前
小葛发布了新的文献求助10
8秒前
Kevin发布了新的文献求助20
9秒前
lzx完成签到,获得积分10
9秒前
ZIS发布了新的文献求助10
9秒前
吴帅发布了新的文献求助10
9秒前
9秒前
9秒前
keyanrubbish发布了新的文献求助10
9秒前
tangshijun完成签到,获得积分10
10秒前
10秒前
10秒前
子车茗应助sober采纳,获得20
10秒前
10秒前
无疾而终完成签到,获得积分10
10秒前
Tdj完成签到,获得积分10
10秒前
白苹果完成签到 ,获得积分10
11秒前
天行完成签到,获得积分10
11秒前
爆米花应助666采纳,获得10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836