Assessment and Combination of SMAP and Sentinel-1A/B-Derived Soil Moisture Estimates With Land Surface Model Outputs in the Mid-Atlantic Coastal Plain, USA

环境科学 辐射计 遥感 含水量 散射计 气象学 地质学 雷达 计算机科学 物理 岩土工程 电信
作者
Hyunglok Kim,Sangchul Lee,Michael H. Cosh,Venkat Lakshmi,Yonghwan Kwon,Gregory W. McCarty
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (2): 991-1011 被引量:4
标识
DOI:10.1109/tgrs.2020.2991665
摘要

Prediction of large-scale water-related natural disasters such as droughts, floods, wildfires, landslides, and dust outbreaks can benefit from the high spatial resolution soil moisture (SM) data of satellite and modeled products because antecedent SM conditions in the topsoil layer govern the partitioning of precipitation into infiltration and runoff. SM data retrieved from Soil Moisture Active Passive (SMAP) have proved to be an effective method of monitoring SM content at different spatial resolutions: 1) radiometer-based product gridded at 36 km; 2) radiometer-only enhanced posting product gridded at 9 km; and 3) SMAP/Sentinel-1A/B products at 3 and 1 km. In this article, we focused on 9-, 3-, and 1-km SM products: three products were validated against in situ data using conventional and triple collocation analysis (TCA) statistics and were then merged with a Noah-Multiparameterization version-3.6 (NoahMP36) land surface model (LSM). An exponential filter and a cumulative density function (CDF) were applied for further evaluation of the three SM products, and the maximize-R method was applied to combine SMAP and NoahMP36 SM data. CDF-matched 9-, 3-, and 1-km SMAP SM data showed reliable performance: R and ubRMSD values of the CDF-matched SMAP products were 0.658, 0.626, and 0.570 and 0.049, 0.053, and 0.055 m 3 /m 3 , respectively. When SMAP and NoahMP36 were combined, the R-values for the 9-, 3-, and 1-km SMAP SM data were greatly improved: R-values were 0.825, 0.804, and 0.795, and ubRMSDs were 0.034, 0.036, and 0.037 m 3 /m 3 , respectively. These results indicate the potential uses of SMAP/Sentinel data for improving regional-scale SM estimates and for creating further applications of LSMs with improved accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助Lvj采纳,获得10
刚刚
SYLH应助YHL采纳,获得10
刚刚
ranqi完成签到,获得积分10
刚刚
刚刚
1秒前
17808352679发布了新的文献求助10
1秒前
易生完成签到,获得积分10
2秒前
细腻曼冬完成签到 ,获得积分10
2秒前
2秒前
2秒前
9209完成签到 ,获得积分10
2秒前
3秒前
ranqi发布了新的文献求助10
3秒前
云落完成签到,获得积分10
3秒前
田様应助杨枝甘露樱桃采纳,获得10
3秒前
冲浪男孩226完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
现实的曼荷关注了科研通微信公众号
5秒前
5秒前
邓佳鑫Alan应助uniphoton采纳,获得10
5秒前
5秒前
英姑应助cc采纳,获得10
5秒前
MM完成签到,获得积分10
6秒前
lyn发布了新的文献求助10
6秒前
koipp发布了新的文献求助10
6秒前
Rebecca发布了新的文献求助10
7秒前
pinging应助愉快冰淇淋采纳,获得10
7秒前
不厌发布了新的文献求助100
7秒前
8秒前
cherry发布了新的文献求助10
8秒前
CodeCraft应助马洛采纳,获得10
9秒前
十七完成签到,获得积分10
9秒前
10秒前
兴奋汽车完成签到,获得积分10
10秒前
学就完了完成签到,获得积分10
10秒前
张志顺发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762