Assessment and Combination of SMAP and Sentinel-1A/B-Derived Soil Moisture Estimates With Land Surface Model Outputs in the Mid-Atlantic Coastal Plain, USA

环境科学 辐射计 遥感 含水量 散射计 气象学 地质学 雷达 计算机科学 物理 岩土工程 电信
作者
Hyunglok Kim,Sangchul Lee,Michael H. Cosh,Venkat Lakshmi,Yonghwan Kwon,Gregory W. McCarty
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (2): 991-1011 被引量:4
标识
DOI:10.1109/tgrs.2020.2991665
摘要

Prediction of large-scale water-related natural disasters such as droughts, floods, wildfires, landslides, and dust outbreaks can benefit from the high spatial resolution soil moisture (SM) data of satellite and modeled products because antecedent SM conditions in the topsoil layer govern the partitioning of precipitation into infiltration and runoff. SM data retrieved from Soil Moisture Active Passive (SMAP) have proved to be an effective method of monitoring SM content at different spatial resolutions: 1) radiometer-based product gridded at 36 km; 2) radiometer-only enhanced posting product gridded at 9 km; and 3) SMAP/Sentinel-1A/B products at 3 and 1 km. In this article, we focused on 9-, 3-, and 1-km SM products: three products were validated against in situ data using conventional and triple collocation analysis (TCA) statistics and were then merged with a Noah-Multiparameterization version-3.6 (NoahMP36) land surface model (LSM). An exponential filter and a cumulative density function (CDF) were applied for further evaluation of the three SM products, and the maximize-R method was applied to combine SMAP and NoahMP36 SM data. CDF-matched 9-, 3-, and 1-km SMAP SM data showed reliable performance: R and ubRMSD values of the CDF-matched SMAP products were 0.658, 0.626, and 0.570 and 0.049, 0.053, and 0.055 m 3 /m 3 , respectively. When SMAP and NoahMP36 were combined, the R-values for the 9-, 3-, and 1-km SMAP SM data were greatly improved: R-values were 0.825, 0.804, and 0.795, and ubRMSDs were 0.034, 0.036, and 0.037 m 3 /m 3 , respectively. These results indicate the potential uses of SMAP/Sentinel data for improving regional-scale SM estimates and for creating further applications of LSMs with improved accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
huang完成签到,获得积分10
1秒前
1秒前
3秒前
糖果不甜完成签到,获得积分10
3秒前
无花果应助婷婷采纳,获得10
4秒前
5秒前
Akim应助刘佳慧采纳,获得10
7秒前
7秒前
尹天奇发布了新的文献求助10
7秒前
7秒前
田様应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
ccm应助科研通管家采纳,获得20
10秒前
Owen应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
huang发布了新的文献求助10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得20
10秒前
烟花应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
终梦应助科研通管家采纳,获得30
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
ccm应助科研通管家采纳,获得10
11秒前
xxfsx应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
完美又槐应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
12秒前
lzr发布了新的文献求助10
12秒前
李爱国应助彼岸采纳,获得10
13秒前
hhh关注了科研通微信公众号
13秒前
李健的粉丝团团长应助sss采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818