已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Surface and Internal Fingerprint Reconstruction From Optical Coherence Tomography Through Convolutional Neural Network

计算机科学 人工智能 指纹(计算) 卷积神经网络 分割 模式识别(心理学) 计算机视觉 光学相干层析成像 体积热力学 匹配(统计) 指纹识别 数学 光学 物理 统计 量子力学
作者
Baojin Ding,Haixia Wang,Peng Chen,Yilong Zhang,Zhenhua Guo,Jianjiang Feng,Ronghua Liang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:16: 685-700 被引量:36
标识
DOI:10.1109/tifs.2020.3016829
摘要

Optical coherence tomography (OCT), as a non-destructive and high-resolution fingerprint acquisition technology, is robust against poor skin conditions and resistant to spoof attacks. It measures fingertip information on and beneath skin as 3D volume data, containing the surface fingerprint, internal fingerprint and sweat glands. Various methods have been proposed to extract internal fingerprints, which ignore the inter-slice dependence and often require manually selected parameters. In this article, a modified U-Net that combines residual learning, bidirectional convolutional long short-term memory and hybrid dilated convolution (denoted as BCL-U Net) for OCT volume data segmentation and two fingerprint reconstruction approaches are proposed. To the best of our knowledge, it is the first time that simultaneous and automatic extraction is performed for surface fingerprint, internal fingerprint and sweat gland. The proposed BCL-U Net utilizes the spatial dependence in OCT volume data and deals with segmentation of objects with diverse sizes to achieve accurate extraction. Comparisons have been performed to demonstrate the advantages of the proposed method. A thorough evaluation of the recognition abilities of internal and surface fingerprints is conducted using a dataset significantly larger than previous studies. Four databases containing internal and surface fingerprints are generated from 1572 OCT volume data by the proposed method. The internal fingerprint matching experiment has achieved a lowest equal error rate (EER) of 0.95%. Mixed internal and surface fingerprint matching experiment is also performed and achieves an EER of 3.67%, verifying the consistency of the internal and surface fingerprints. The matching experiments for fingers under poor skin conditions show a 2.47% EER of internal fingerprints that is much lower than that of surface fingerprints, which proves the advantage of internal fingerprints and indicates the potential of the internal fingerprints to supplement or replace the surface fingerprints for some specific applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
郭奕沛发布了新的文献求助50
1秒前
不摇碧莲完成签到 ,获得积分10
1秒前
雨洋完成签到,获得积分0
2秒前
2秒前
嘿嘿发布了新的文献求助10
3秒前
胡说八道发布了新的文献求助10
5秒前
5秒前
echo完成签到 ,获得积分10
6秒前
林兰特完成签到 ,获得积分10
6秒前
传奇3应助TingtingGZ采纳,获得10
7秒前
10秒前
12秒前
55155255发布了新的文献求助10
13秒前
13秒前
Ww发布了新的文献求助10
15秒前
李李05发布了新的文献求助10
17秒前
太阳花完成签到,获得积分10
18秒前
TingtingGZ发布了新的文献求助10
19秒前
Ching完成签到,获得积分10
20秒前
22秒前
23秒前
鹿鹿完成签到 ,获得积分10
23秒前
24秒前
蓝天应助郭奕沛采纳,获得10
28秒前
ZZyy发布了新的文献求助10
29秒前
咕噜坚果发布了新的文献求助10
29秒前
29秒前
xalone完成签到,获得积分10
32秒前
34秒前
xalone发布了新的文献求助10
35秒前
搜集达人应助Marshall采纳,获得10
36秒前
37秒前
白石杏发布了新的文献求助10
38秒前
小圭发布了新的文献求助10
42秒前
小小怪完成签到 ,获得积分10
42秒前
44秒前
油料种子关注了科研通微信公众号
46秒前
董小婷完成签到 ,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663892
求助须知:如何正确求助?哪些是违规求助? 4854151
关于积分的说明 15106245
捐赠科研通 4822200
什么是DOI,文献DOI怎么找? 2581283
邀请新用户注册赠送积分活动 1535500
关于科研通互助平台的介绍 1493747