Surface and Internal Fingerprint Reconstruction From Optical Coherence Tomography Through Convolutional Neural Network

计算机科学 人工智能 指纹(计算) 卷积神经网络 分割 模式识别(心理学) 计算机视觉 光学相干层析成像 体积热力学 匹配(统计) 指纹识别 数学 光学 物理 统计 量子力学
作者
Baojin Ding,Haixia Wang,Peng Chen,Yilong Zhang,Zhenhua Guo,Jianjiang Feng,Ronghua Liang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:16: 685-700 被引量:36
标识
DOI:10.1109/tifs.2020.3016829
摘要

Optical coherence tomography (OCT), as a non-destructive and high-resolution fingerprint acquisition technology, is robust against poor skin conditions and resistant to spoof attacks. It measures fingertip information on and beneath skin as 3D volume data, containing the surface fingerprint, internal fingerprint and sweat glands. Various methods have been proposed to extract internal fingerprints, which ignore the inter-slice dependence and often require manually selected parameters. In this article, a modified U-Net that combines residual learning, bidirectional convolutional long short-term memory and hybrid dilated convolution (denoted as BCL-U Net) for OCT volume data segmentation and two fingerprint reconstruction approaches are proposed. To the best of our knowledge, it is the first time that simultaneous and automatic extraction is performed for surface fingerprint, internal fingerprint and sweat gland. The proposed BCL-U Net utilizes the spatial dependence in OCT volume data and deals with segmentation of objects with diverse sizes to achieve accurate extraction. Comparisons have been performed to demonstrate the advantages of the proposed method. A thorough evaluation of the recognition abilities of internal and surface fingerprints is conducted using a dataset significantly larger than previous studies. Four databases containing internal and surface fingerprints are generated from 1572 OCT volume data by the proposed method. The internal fingerprint matching experiment has achieved a lowest equal error rate (EER) of 0.95%. Mixed internal and surface fingerprint matching experiment is also performed and achieves an EER of 3.67%, verifying the consistency of the internal and surface fingerprints. The matching experiments for fingers under poor skin conditions show a 2.47% EER of internal fingerprints that is much lower than that of surface fingerprints, which proves the advantage of internal fingerprints and indicates the potential of the internal fingerprints to supplement or replace the surface fingerprints for some specific applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
受伤妙菱完成签到,获得积分10
1秒前
浮游应助碧蓝帆布鞋采纳,获得10
2秒前
脑洞疼应助蛋挞采纳,获得10
2秒前
时米米米发布了新的文献求助10
3秒前
典雅问寒完成签到,获得积分0
4秒前
英姑应助XIGUA采纳,获得10
4秒前
量子星尘发布了新的文献求助10
6秒前
执着凌波发布了新的文献求助10
6秒前
祁夫人完成签到,获得积分10
6秒前
7秒前
杨子墨发布了新的文献求助10
7秒前
wangjing11发布了新的文献求助10
7秒前
星辰大海应助这里是阿龙采纳,获得10
7秒前
hhyctb完成签到,获得积分10
7秒前
mqq完成签到 ,获得积分10
8秒前
小罗完成签到,获得积分10
8秒前
赘婿应助xx采纳,获得10
9秒前
SciGPT应助毅诚菌采纳,获得10
9秒前
10秒前
10秒前
zxping发布了新的文献求助10
11秒前
小二郎应助受伤妙菱采纳,获得10
12秒前
Luna完成签到,获得积分10
12秒前
huoyunli完成签到,获得积分10
12秒前
13秒前
Weiweiweixiao完成签到,获得积分10
14秒前
huoyunli发布了新的文献求助10
15秒前
打打应助满意的蜜蜂采纳,获得10
15秒前
dalong完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
20秒前
HarUkii发布了新的文献求助10
20秒前
李健应助huoyunli采纳,获得10
21秒前
故酒完成签到,获得积分10
22秒前
Ava应助初遇之时最暖采纳,获得10
23秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908385
求助须知:如何正确求助?哪些是违规求助? 4185042
关于积分的说明 12996504
捐赠科研通 3951722
什么是DOI,文献DOI怎么找? 2167149
邀请新用户注册赠送积分活动 1185586
关于科研通互助平台的介绍 1092179