亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Surface and Internal Fingerprint Reconstruction From Optical Coherence Tomography Through Convolutional Neural Network

计算机科学 人工智能 指纹(计算) 卷积神经网络 分割 模式识别(心理学) 计算机视觉 光学相干层析成像 体积热力学 匹配(统计) 指纹识别 数学 光学 物理 统计 量子力学
作者
Baojin Ding,Haixia Wang,Peng Chen,Yilong Zhang,Zhenhua Guo,Jianjiang Feng,Ronghua Liang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:16: 685-700 被引量:36
标识
DOI:10.1109/tifs.2020.3016829
摘要

Optical coherence tomography (OCT), as a non-destructive and high-resolution fingerprint acquisition technology, is robust against poor skin conditions and resistant to spoof attacks. It measures fingertip information on and beneath skin as 3D volume data, containing the surface fingerprint, internal fingerprint and sweat glands. Various methods have been proposed to extract internal fingerprints, which ignore the inter-slice dependence and often require manually selected parameters. In this article, a modified U-Net that combines residual learning, bidirectional convolutional long short-term memory and hybrid dilated convolution (denoted as BCL-U Net) for OCT volume data segmentation and two fingerprint reconstruction approaches are proposed. To the best of our knowledge, it is the first time that simultaneous and automatic extraction is performed for surface fingerprint, internal fingerprint and sweat gland. The proposed BCL-U Net utilizes the spatial dependence in OCT volume data and deals with segmentation of objects with diverse sizes to achieve accurate extraction. Comparisons have been performed to demonstrate the advantages of the proposed method. A thorough evaluation of the recognition abilities of internal and surface fingerprints is conducted using a dataset significantly larger than previous studies. Four databases containing internal and surface fingerprints are generated from 1572 OCT volume data by the proposed method. The internal fingerprint matching experiment has achieved a lowest equal error rate (EER) of 0.95%. Mixed internal and surface fingerprint matching experiment is also performed and achieves an EER of 3.67%, verifying the consistency of the internal and surface fingerprints. The matching experiments for fingers under poor skin conditions show a 2.47% EER of internal fingerprints that is much lower than that of surface fingerprints, which proves the advantage of internal fingerprints and indicates the potential of the internal fingerprints to supplement or replace the surface fingerprints for some specific applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助30
3秒前
3秒前
Tobby发布了新的文献求助10
6秒前
小小猪完成签到,获得积分10
7秒前
14秒前
零玖完成签到 ,获得积分10
22秒前
34秒前
xiaozhang发布了新的文献求助10
36秒前
小马甲应助xiaozhang采纳,获得10
49秒前
1分钟前
lucky发布了新的文献求助10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
平常念蕾完成签到,获得积分10
1分钟前
TK完成签到 ,获得积分10
1分钟前
Zx_1993应助心灵美的大山采纳,获得20
1分钟前
1分钟前
平常念蕾发布了新的文献求助10
1分钟前
水刃木完成签到,获得积分10
2分钟前
2分钟前
elliotzzz发布了新的文献求助10
2分钟前
Shion完成签到,获得积分10
2分钟前
希望天下0贩的0应助yo采纳,获得10
2分钟前
oceana发布了新的文献求助10
2分钟前
浮游应助yqt采纳,获得30
2分钟前
oceana完成签到,获得积分10
2分钟前
2分钟前
所所应助平常念蕾采纳,获得10
2分钟前
yo发布了新的文献求助10
2分钟前
3分钟前
elliotzzz应助jikngsk采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426408
求助须知:如何正确求助?哪些是违规求助? 4540188
关于积分的说明 14171785
捐赠科研通 4457921
什么是DOI,文献DOI怎么找? 2444736
邀请新用户注册赠送积分活动 1435738
关于科研通互助平台的介绍 1413211