Surface and Internal Fingerprint Reconstruction From Optical Coherence Tomography Through Convolutional Neural Network

计算机科学 人工智能 指纹(计算) 卷积神经网络 分割 模式识别(心理学) 计算机视觉 光学相干层析成像 体积热力学 匹配(统计) 指纹识别 数学 光学 物理 统计 量子力学
作者
Baojin Ding,Haixia Wang,Peng Chen,Yilong Zhang,Zhenhua Guo,Jianjiang Feng,Ronghua Liang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:16: 685-700 被引量:36
标识
DOI:10.1109/tifs.2020.3016829
摘要

Optical coherence tomography (OCT), as a non-destructive and high-resolution fingerprint acquisition technology, is robust against poor skin conditions and resistant to spoof attacks. It measures fingertip information on and beneath skin as 3D volume data, containing the surface fingerprint, internal fingerprint and sweat glands. Various methods have been proposed to extract internal fingerprints, which ignore the inter-slice dependence and often require manually selected parameters. In this article, a modified U-Net that combines residual learning, bidirectional convolutional long short-term memory and hybrid dilated convolution (denoted as BCL-U Net) for OCT volume data segmentation and two fingerprint reconstruction approaches are proposed. To the best of our knowledge, it is the first time that simultaneous and automatic extraction is performed for surface fingerprint, internal fingerprint and sweat gland. The proposed BCL-U Net utilizes the spatial dependence in OCT volume data and deals with segmentation of objects with diverse sizes to achieve accurate extraction. Comparisons have been performed to demonstrate the advantages of the proposed method. A thorough evaluation of the recognition abilities of internal and surface fingerprints is conducted using a dataset significantly larger than previous studies. Four databases containing internal and surface fingerprints are generated from 1572 OCT volume data by the proposed method. The internal fingerprint matching experiment has achieved a lowest equal error rate (EER) of 0.95%. Mixed internal and surface fingerprint matching experiment is also performed and achieves an EER of 3.67%, verifying the consistency of the internal and surface fingerprints. The matching experiments for fingers under poor skin conditions show a 2.47% EER of internal fingerprints that is much lower than that of surface fingerprints, which proves the advantage of internal fingerprints and indicates the potential of the internal fingerprints to supplement or replace the surface fingerprints for some specific applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Albert发布了新的文献求助10
刚刚
叫我富婆儿完成签到,获得积分10
刚刚
Ava应助舒心的如柏采纳,获得10
1秒前
1秒前
辛普森完成签到,获得积分10
1秒前
顺顺顺顺完成签到 ,获得积分10
1秒前
爱吃蔬菜完成签到,获得积分10
2秒前
秋秋儿完成签到,获得积分10
2秒前
wy完成签到,获得积分10
3秒前
888完成签到,获得积分10
3秒前
3秒前
火花发布了新的文献求助10
4秒前
Sharif318完成签到,获得积分10
4秒前
充电宝应助TiAmo采纳,获得10
5秒前
Emper发布了新的文献求助10
5秒前
思源应助踟蹰采纳,获得10
5秒前
5秒前
6秒前
Kurenai发布了新的文献求助100
6秒前
三岁完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
yang完成签到,获得积分10
6秒前
杰杰发布了新的文献求助20
7秒前
科研通AI6应助222采纳,获得10
7秒前
wsj发布了新的文献求助10
8秒前
st完成签到,获得积分10
8秒前
活力的含桃完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
zhq发布了新的文献求助10
10秒前
得失心的诅咒完成签到 ,获得积分10
11秒前
11秒前
11秒前
李健的小迷弟应助菠萝采纳,获得10
11秒前
12秒前
浮游应助哈哈哈哈哈采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939