Surface and Internal Fingerprint Reconstruction From Optical Coherence Tomography Through Convolutional Neural Network

计算机科学 人工智能 指纹(计算) 卷积神经网络 分割 模式识别(心理学) 计算机视觉 光学相干层析成像 体积热力学 匹配(统计) 指纹识别 数学 光学 物理 量子力学 统计
作者
Baojin Ding,Haixia Wang,Peng Chen,Yilong Zhang,Zhenhua Guo,Jianjiang Feng,Ronghua Liang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:16: 685-700 被引量:36
标识
DOI:10.1109/tifs.2020.3016829
摘要

Optical coherence tomography (OCT), as a non-destructive and high-resolution fingerprint acquisition technology, is robust against poor skin conditions and resistant to spoof attacks. It measures fingertip information on and beneath skin as 3D volume data, containing the surface fingerprint, internal fingerprint and sweat glands. Various methods have been proposed to extract internal fingerprints, which ignore the inter-slice dependence and often require manually selected parameters. In this article, a modified U-Net that combines residual learning, bidirectional convolutional long short-term memory and hybrid dilated convolution (denoted as BCL-U Net) for OCT volume data segmentation and two fingerprint reconstruction approaches are proposed. To the best of our knowledge, it is the first time that simultaneous and automatic extraction is performed for surface fingerprint, internal fingerprint and sweat gland. The proposed BCL-U Net utilizes the spatial dependence in OCT volume data and deals with segmentation of objects with diverse sizes to achieve accurate extraction. Comparisons have been performed to demonstrate the advantages of the proposed method. A thorough evaluation of the recognition abilities of internal and surface fingerprints is conducted using a dataset significantly larger than previous studies. Four databases containing internal and surface fingerprints are generated from 1572 OCT volume data by the proposed method. The internal fingerprint matching experiment has achieved a lowest equal error rate (EER) of 0.95%. Mixed internal and surface fingerprint matching experiment is also performed and achieves an EER of 3.67%, verifying the consistency of the internal and surface fingerprints. The matching experiments for fingers under poor skin conditions show a 2.47% EER of internal fingerprints that is much lower than that of surface fingerprints, which proves the advantage of internal fingerprints and indicates the potential of the internal fingerprints to supplement or replace the surface fingerprints for some specific applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特易形发布了新的文献求助10
刚刚
Annie完成签到,获得积分10
1秒前
Xyx发布了新的文献求助10
2秒前
小可猪完成签到 ,获得积分10
2秒前
无语的鱼完成签到,获得积分10
2秒前
2秒前
Akim应助CR7采纳,获得10
3秒前
5秒前
Eazin完成签到,获得积分10
6秒前
uuu完成签到 ,获得积分10
6秒前
植物发布了新的文献求助10
7秒前
8秒前
uu发布了新的文献求助10
9秒前
辛勤觅儿完成签到,获得积分10
9秒前
11秒前
11秒前
酷波er应助zcg采纳,获得10
12秒前
12秒前
辛勤觅儿发布了新的文献求助10
13秒前
yongziwu发布了新的文献求助10
14秒前
14秒前
田様应助passerby采纳,获得10
15秒前
平常幼菱发布了新的文献求助10
16秒前
dreamode应助Ice_zhao采纳,获得10
16秒前
17秒前
曲向珊完成签到,获得积分10
17秒前
Camellia完成签到,获得积分10
17秒前
Carmelo发布了新的文献求助10
18秒前
19秒前
阿诺完成签到,获得积分10
19秒前
22秒前
23秒前
嗑瓜子传奇发布了新的文献求助200
23秒前
田様应助Xyx采纳,获得10
24秒前
wanci应助平常幼菱采纳,获得10
24秒前
碧蓝子轩完成签到,获得积分10
24秒前
MEMSforever应助温其如玉采纳,获得10
24秒前
25秒前
lm完成签到,获得积分10
26秒前
tutu完成签到,获得积分10
27秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
The Oxford Handbook of Transcranial Stimulation (the second edition) 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3438652
求助须知:如何正确求助?哪些是违规求助? 3035501
关于积分的说明 8958855
捐赠科研通 2723491
什么是DOI,文献DOI怎么找? 1494009
科研通“疑难数据库(出版商)”最低求助积分说明 690542
邀请新用户注册赠送积分活动 686940