重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Construction of gene-classifier and co-expression network analysis of genes in association with major depressive disorder

基因 重性抑郁障碍 基因本体论 计算生物学 分类器(UML) 相关性 生物 遗传学 基因表达 神经科学 人工智能 计算机科学 数学 扁桃形结构 几何学
作者
Dongmei Guo,Shumin Zhang,Zhen Tang,Hanyan Wang
出处
期刊:Psychiatry Research-neuroimaging [Elsevier]
卷期号:293: 113387-113387 被引量:3
标识
DOI:10.1016/j.psychres.2020.113387
摘要

Because the pathogenesis of major depressive disorder (MDD) is still unclear and the accurate diagnosis remains unavailable, we aimed to analyze its molecular mechanisms and develop a gene classifier to improve diagnostic accuracy. We extracted differentially expressed genes from two datasets, GSE45642 (from brain tissue samples) and GSE98793 (from blood samples), and found three key modules to have a significant correlation with MDD traits by weighted gene coexpression network analysis. Hub genes were identified from the key modules according to the connectivity degree in the network and subjected to least absolute shrinkage and selection operator regression analysis. A total of eighty-five hub genes were selected to construct the gene classifier, which had considerable ability to recognize MDD patients in the training set and test set. In addition, the relationship between the key MDD modules and brain tissues indicated that the anterior cingulate should be a notable region in the study of MDD pathogenesis. The results of Gene Ontology (GO) and pathway enrichment analyses reiterate the relationship between depression and immunity. Therefore we identified MDD hub genes in the InnateDB database, and found 14 genes involved in both MDD and the inflammatory response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助111采纳,获得10
刚刚
T=T生物完成签到,获得积分10
1秒前
lili_jinjin发布了新的文献求助10
1秒前
2秒前
jingluo发布了新的文献求助10
2秒前
3秒前
猴子大王666完成签到,获得积分10
3秒前
4秒前
4秒前
WDF发布了新的文献求助10
4秒前
情怀应助猪头采纳,获得10
5秒前
6秒前
Xmite完成签到,获得积分10
6秒前
小二郎应助yuhan采纳,获得10
6秒前
7秒前
大力的依丝完成签到,获得积分10
7秒前
黄惠兰完成签到,获得积分10
7秒前
7秒前
7秒前
慕青应助bulangni采纳,获得30
8秒前
热情的菲音完成签到,获得积分10
8秒前
9秒前
Owen应助山3采纳,获得10
9秒前
liyiming发布了新的文献求助10
10秒前
优雅越泽发布了新的文献求助10
11秒前
11秒前
WDF完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
多大关注了科研通微信公众号
12秒前
12秒前
Ava应助evetang采纳,获得10
12秒前
老李完成签到,获得积分10
13秒前
14秒前
orixero应助mdomse2109采纳,获得10
14秒前
111完成签到,获得积分20
15秒前
15秒前
jingluo完成签到,获得积分10
15秒前
15秒前
樊念烟发布了新的文献求助10
15秒前
Stefani完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516