Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease

卷积神经网络 计算机科学 人工智能 卷积(计算机科学) 上下文图像分类 人工神经网络 模式识别(心理学) 机器学习 图像(数学)
作者
Utpal Barman,Ridip Dev Choudhury,Diganto Sahu,Golap Gunjan Barman
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:177: 105661-105661 被引量:79
标识
DOI:10.1016/j.compag.2020.105661
摘要

Experts help farmers to diagnose the citrus diseases by using agriculture laboratories or viewing the visual symptoms. These methods may not be accessible to all the farmers due to the expert’s cost and non-availability of laboratories. The proposed work presents the comparison of two different Convolutional Neural Network (CNN) architectures to classify diseases of the citrus leaf. In this paper, two types of CNN architectures, such as MobileNet and Self-Structured (SSCNN) classifiers were used to detect and classify citrus leaf diseases at the vegetative stage. The proposed work prepared a smartphone image based citrus disease dataset. Both the models were trained and tested on the same citrus dataset. The performances of the models were evaluated using the accuracy and loss of the training and validation sets, respectively. The best training accuracy of the MobileNet CNN was 98% with 92% validation accuracy at the epoch 10. But the best training accuracy of the SSCNN was 98% with 99% validation accuracy at the epoch 12. The proposed system indicates that the SSCNN is more helpful and accurate for smartphone image based citrus leaf disease classification. In addition, the SSCNN algorithm takes less computation time as compared to MobileNet and it can be considered a cost-effective method for citrus disease detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ppig12345应助yx采纳,获得10
1秒前
haveatry发布了新的文献求助10
1秒前
1秒前
1秒前
高大凌寒应助无奈秋荷采纳,获得10
2秒前
奕初阳完成签到,获得积分10
3秒前
3秒前
阿亮86完成签到,获得积分10
5秒前
个性的紫菜应助小张采纳,获得20
6秒前
科研通AI2S应助冰下之鲸采纳,获得10
7秒前
科研通AI2S应助jdj采纳,获得10
7秒前
Lucas应助Zyyyh采纳,获得10
8秒前
完美世界应助九点一定起采纳,获得10
10秒前
12秒前
12秒前
Ava应助yun采纳,获得10
13秒前
科研通AI2S应助月军采纳,获得10
14秒前
咎青文完成签到,获得积分10
14秒前
优雅的水绿完成签到,获得积分10
15秒前
狂野东蒽发布了新的文献求助10
16秒前
脑洞疼应助yx采纳,获得10
16秒前
congjia完成签到,获得积分10
17秒前
18秒前
个性的紫菜应助yxt采纳,获得10
18秒前
GAO发布了新的文献求助10
18秒前
无花果应助刘浩然采纳,获得10
19秒前
hanlinhong发布了新的文献求助10
19秒前
科研通AI2S应助科研小达人采纳,获得10
20秒前
20秒前
21秒前
wusanlinshi发布了新的文献求助10
22秒前
完美世界应助GAO采纳,获得10
23秒前
香菜精发布了新的文献求助10
23秒前
24秒前
Orange应助安详水壶采纳,获得10
26秒前
28秒前
小沈发布了新的文献求助10
28秒前
CipherSage应助九点一定起采纳,获得10
29秒前
1234完成签到,获得积分10
30秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145419
求助须知:如何正确求助?哪些是违规求助? 2796867
关于积分的说明 7821676
捐赠科研通 2453124
什么是DOI,文献DOI怎么找? 1305464
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464