亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease

卷积神经网络 计算机科学 人工智能 卷积(计算机科学) 上下文图像分类 人工神经网络 模式识别(心理学) 机器学习 图像(数学)
作者
Utpal Barman,Ridip Dev Choudhury,Diganto Sahu,Golap Gunjan Barman
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:177: 105661-105661 被引量:123
标识
DOI:10.1016/j.compag.2020.105661
摘要

Experts help farmers to diagnose the citrus diseases by using agriculture laboratories or viewing the visual symptoms. These methods may not be accessible to all the farmers due to the expert’s cost and non-availability of laboratories. The proposed work presents the comparison of two different Convolutional Neural Network (CNN) architectures to classify diseases of the citrus leaf. In this paper, two types of CNN architectures, such as MobileNet and Self-Structured (SSCNN) classifiers were used to detect and classify citrus leaf diseases at the vegetative stage. The proposed work prepared a smartphone image based citrus disease dataset. Both the models were trained and tested on the same citrus dataset. The performances of the models were evaluated using the accuracy and loss of the training and validation sets, respectively. The best training accuracy of the MobileNet CNN was 98% with 92% validation accuracy at the epoch 10. But the best training accuracy of the SSCNN was 98% with 99% validation accuracy at the epoch 12. The proposed system indicates that the SSCNN is more helpful and accurate for smartphone image based citrus leaf disease classification. In addition, the SSCNN algorithm takes less computation time as compared to MobileNet and it can be considered a cost-effective method for citrus disease detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九月发布了新的文献求助10
4秒前
6秒前
13秒前
不言而喻完成签到,获得积分10
17秒前
556677y完成签到,获得积分10
20秒前
NexusExplorer应助刘星采纳,获得10
34秒前
41秒前
lllth发布了新的文献求助10
45秒前
手打鱼丸完成签到 ,获得积分10
50秒前
稳重的泽洋完成签到 ,获得积分10
54秒前
1分钟前
sealking完成签到,获得积分10
1分钟前
1分钟前
劉浏琉应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
劉浏琉应助科研通管家采纳,获得10
1分钟前
1分钟前
劉浏琉应助科研通管家采纳,获得10
1分钟前
轻松大王应助科研通管家采纳,获得10
1分钟前
劉浏琉应助科研通管家采纳,获得10
1分钟前
sealking发布了新的文献求助30
1分钟前
suibiao完成签到 ,获得积分10
1分钟前
jojo完成签到 ,获得积分10
1分钟前
Raunio完成签到,获得积分10
1分钟前
shaylie完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
songjiatian发布了新的文献求助10
1分钟前
KeldonHuang完成签到,获得积分10
1分钟前
aaa发布了新的文献求助10
1分钟前
疯狂的红牛完成签到,获得积分20
1分钟前
上官若男应助疯狂的红牛采纳,获得10
1分钟前
张杰列夫完成签到 ,获得积分10
1分钟前
酷波er应助长情胡萝卜采纳,获得10
1分钟前
1分钟前
卜哥完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788381
求助须知:如何正确求助?哪些是违规求助? 5706772
关于积分的说明 15473474
捐赠科研通 4916463
什么是DOI,文献DOI怎么找? 2646349
邀请新用户注册赠送积分活动 1594016
关于科研通互助平台的介绍 1548447