Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease

卷积神经网络 计算机科学 人工智能 卷积(计算机科学) 上下文图像分类 人工神经网络 模式识别(心理学) 机器学习 图像(数学)
作者
Utpal Barman,Ridip Dev Choudhury,Diganto Sahu,Golap Gunjan Barman
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:177: 105661-105661 被引量:123
标识
DOI:10.1016/j.compag.2020.105661
摘要

Experts help farmers to diagnose the citrus diseases by using agriculture laboratories or viewing the visual symptoms. These methods may not be accessible to all the farmers due to the expert’s cost and non-availability of laboratories. The proposed work presents the comparison of two different Convolutional Neural Network (CNN) architectures to classify diseases of the citrus leaf. In this paper, two types of CNN architectures, such as MobileNet and Self-Structured (SSCNN) classifiers were used to detect and classify citrus leaf diseases at the vegetative stage. The proposed work prepared a smartphone image based citrus disease dataset. Both the models were trained and tested on the same citrus dataset. The performances of the models were evaluated using the accuracy and loss of the training and validation sets, respectively. The best training accuracy of the MobileNet CNN was 98% with 92% validation accuracy at the epoch 10. But the best training accuracy of the SSCNN was 98% with 99% validation accuracy at the epoch 12. The proposed system indicates that the SSCNN is more helpful and accurate for smartphone image based citrus leaf disease classification. In addition, the SSCNN algorithm takes less computation time as compared to MobileNet and it can be considered a cost-effective method for citrus disease detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助山雷采纳,获得10
刚刚
莫名完成签到 ,获得积分10
刚刚
无限秋灵发布了新的文献求助10
刚刚
2秒前
2秒前
顾矜应助撒旦asd采纳,获得10
3秒前
英俊的铭应助ww采纳,获得10
3秒前
3秒前
Joseph_sss完成签到 ,获得积分10
3秒前
lixia完成签到 ,获得积分10
4秒前
水眉音发布了新的文献求助10
4秒前
MchemG应助吴先生采纳,获得10
5秒前
123发布了新的文献求助10
6秒前
WNL发布了新的文献求助100
6秒前
sherrymasha完成签到,获得积分10
7秒前
阿威完成签到,获得积分10
7秒前
贪玩的秋柔应助炸鱼饼采纳,获得10
7秒前
cocopan发布了新的文献求助10
7秒前
小于子88完成签到,获得积分10
7秒前
yibo完成签到,获得积分10
7秒前
mou完成签到,获得积分10
8秒前
Ariel完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
10秒前
10秒前
11秒前
Benji完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
汉堡包应助简柠采纳,获得10
13秒前
13秒前
科目三应助星期天采纳,获得10
14秒前
真云完成签到,获得积分10
14秒前
16秒前
adinike发布了新的文献求助10
17秒前
科研通AI6应助愚林2024采纳,获得10
17秒前
科研通AI6应助Fortune采纳,获得10
18秒前
邱乐乐发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802