Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease

卷积神经网络 计算机科学 人工智能 卷积(计算机科学) 上下文图像分类 人工神经网络 模式识别(心理学) 机器学习 图像(数学)
作者
Utpal Barman,Ridip Dev Choudhury,Diganto Sahu,Golap Gunjan Barman
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:177: 105661-105661 被引量:123
标识
DOI:10.1016/j.compag.2020.105661
摘要

Experts help farmers to diagnose the citrus diseases by using agriculture laboratories or viewing the visual symptoms. These methods may not be accessible to all the farmers due to the expert’s cost and non-availability of laboratories. The proposed work presents the comparison of two different Convolutional Neural Network (CNN) architectures to classify diseases of the citrus leaf. In this paper, two types of CNN architectures, such as MobileNet and Self-Structured (SSCNN) classifiers were used to detect and classify citrus leaf diseases at the vegetative stage. The proposed work prepared a smartphone image based citrus disease dataset. Both the models were trained and tested on the same citrus dataset. The performances of the models were evaluated using the accuracy and loss of the training and validation sets, respectively. The best training accuracy of the MobileNet CNN was 98% with 92% validation accuracy at the epoch 10. But the best training accuracy of the SSCNN was 98% with 99% validation accuracy at the epoch 12. The proposed system indicates that the SSCNN is more helpful and accurate for smartphone image based citrus leaf disease classification. In addition, the SSCNN algorithm takes less computation time as compared to MobileNet and it can be considered a cost-effective method for citrus disease detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风语村发布了新的文献求助10
刚刚
前行的灿发布了新的文献求助10
刚刚
清脆南霜发布了新的文献求助10
刚刚
善学以致用应助kcp采纳,获得10
1秒前
顾矜应助幻心采纳,获得10
1秒前
Scheduling发布了新的文献求助10
2秒前
2秒前
51新月发布了新的文献求助10
3秒前
科研通AI6.1应助青牛采纳,获得10
3秒前
4秒前
5秒前
5秒前
袁大头发布了新的文献求助10
7秒前
完美世界应助潇洒元芹采纳,获得10
9秒前
9秒前
Tangerine完成签到,获得积分10
9秒前
Akim应助大饼卷肉采纳,获得10
10秒前
debaterrr发布了新的文献求助10
10秒前
10秒前
欣慰的夏彤应助轻松大王采纳,获得50
10秒前
帝国之花应助科研通管家采纳,获得10
11秒前
11秒前
科目三应助科研通管家采纳,获得10
11秒前
11秒前
帝国之花应助科研通管家采纳,获得10
11秒前
11秒前
科目三应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
科目三应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
Twonej应助科研通管家采纳,获得50
11秒前
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
11秒前
烟花应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770876
求助须知:如何正确求助?哪些是违规求助? 5588215
关于积分的说明 15425761
捐赠科研通 4904256
什么是DOI,文献DOI怎么找? 2638647
邀请新用户注册赠送积分活动 1586521
关于科研通互助平台的介绍 1541641