Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease

卷积神经网络 计算机科学 人工智能 卷积(计算机科学) 上下文图像分类 人工神经网络 模式识别(心理学) 机器学习 图像(数学)
作者
Utpal Barman,Ridip Dev Choudhury,Diganto Sahu,Golap Gunjan Barman
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:177: 105661-105661 被引量:123
标识
DOI:10.1016/j.compag.2020.105661
摘要

Experts help farmers to diagnose the citrus diseases by using agriculture laboratories or viewing the visual symptoms. These methods may not be accessible to all the farmers due to the expert’s cost and non-availability of laboratories. The proposed work presents the comparison of two different Convolutional Neural Network (CNN) architectures to classify diseases of the citrus leaf. In this paper, two types of CNN architectures, such as MobileNet and Self-Structured (SSCNN) classifiers were used to detect and classify citrus leaf diseases at the vegetative stage. The proposed work prepared a smartphone image based citrus disease dataset. Both the models were trained and tested on the same citrus dataset. The performances of the models were evaluated using the accuracy and loss of the training and validation sets, respectively. The best training accuracy of the MobileNet CNN was 98% with 92% validation accuracy at the epoch 10. But the best training accuracy of the SSCNN was 98% with 99% validation accuracy at the epoch 12. The proposed system indicates that the SSCNN is more helpful and accurate for smartphone image based citrus leaf disease classification. In addition, the SSCNN algorithm takes less computation time as compared to MobileNet and it can be considered a cost-effective method for citrus disease detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
乐乐应助Xueanliu采纳,获得10
1秒前
1秒前
开心的吗喽完成签到 ,获得积分10
1秒前
在水一方应助薄荷源星球采纳,获得10
2秒前
风清扬发布了新的文献求助10
2秒前
Crisp发布了新的文献求助10
2秒前
2秒前
2秒前
lanmin发布了新的文献求助10
2秒前
高玉峰发布了新的文献求助10
3秒前
nini应助HJJHJH采纳,获得10
3秒前
4秒前
4秒前
归尘发布了新的文献求助10
4秒前
hi_traffic发布了新的文献求助10
4秒前
5秒前
6秒前
Dongjie发布了新的文献求助10
6秒前
6秒前
6秒前
土豆发布了新的文献求助10
6秒前
开心完成签到,获得积分10
7秒前
7秒前
潇洒的冰烟完成签到,获得积分10
7秒前
7秒前
科研通AI6应助Xu采纳,获得10
7秒前
7秒前
慕青应助rui采纳,获得10
8秒前
虎皮狗椒发布了新的文献求助10
8秒前
万能图书馆应助gao采纳,获得10
9秒前
9秒前
romeo发布了新的文献求助30
10秒前
janice发布了新的文献求助10
10秒前
严珍珍完成签到 ,获得积分10
10秒前
薄荷味完成签到,获得积分10
11秒前
脑洞疼应助伊洛采纳,获得10
11秒前
12秒前
无极微光应助维嘉采纳,获得20
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615168
求助须知:如何正确求助?哪些是违规求助? 4700058
关于积分的说明 14906318
捐赠科研通 4741317
什么是DOI,文献DOI怎么找? 2547956
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473774