Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease

卷积神经网络 计算机科学 人工智能 卷积(计算机科学) 上下文图像分类 人工神经网络 模式识别(心理学) 机器学习 图像(数学)
作者
Utpal Barman,Ridip Dev Choudhury,Diganto Sahu,Golap Gunjan Barman
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:177: 105661-105661 被引量:123
标识
DOI:10.1016/j.compag.2020.105661
摘要

Experts help farmers to diagnose the citrus diseases by using agriculture laboratories or viewing the visual symptoms. These methods may not be accessible to all the farmers due to the expert’s cost and non-availability of laboratories. The proposed work presents the comparison of two different Convolutional Neural Network (CNN) architectures to classify diseases of the citrus leaf. In this paper, two types of CNN architectures, such as MobileNet and Self-Structured (SSCNN) classifiers were used to detect and classify citrus leaf diseases at the vegetative stage. The proposed work prepared a smartphone image based citrus disease dataset. Both the models were trained and tested on the same citrus dataset. The performances of the models were evaluated using the accuracy and loss of the training and validation sets, respectively. The best training accuracy of the MobileNet CNN was 98% with 92% validation accuracy at the epoch 10. But the best training accuracy of the SSCNN was 98% with 99% validation accuracy at the epoch 12. The proposed system indicates that the SSCNN is more helpful and accurate for smartphone image based citrus leaf disease classification. In addition, the SSCNN algorithm takes less computation time as compared to MobileNet and it can be considered a cost-effective method for citrus disease detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
面包圈完成签到 ,获得积分10
3秒前
得意黑完成签到,获得积分10
3秒前
米子哈完成签到,获得积分10
3秒前
WXX发布了新的文献求助10
3秒前
4秒前
猫橘汽水完成签到,获得积分10
5秒前
shy盼望sky发布了新的文献求助10
5秒前
Jasper应助wrwywzx采纳,获得30
5秒前
ccc完成签到,获得积分10
6秒前
寒冷紫发布了新的文献求助10
6秒前
7秒前
自己哭哭完成签到 ,获得积分10
7秒前
TOGETHERXYZ发布了新的文献求助10
7秒前
7秒前
科研通AI6应助米子哈采纳,获得10
8秒前
8秒前
周周发布了新的文献求助10
8秒前
8秒前
Qiao完成签到,获得积分10
9秒前
pb完成签到,获得积分10
9秒前
9秒前
10秒前
AidenZhang发布了新的文献求助10
10秒前
11秒前
dongdadada完成签到,获得积分10
11秒前
Joker完成签到,获得积分10
11秒前
李艾尔发布了新的文献求助10
11秒前
HH完成签到,获得积分10
12秒前
pb发布了新的文献求助10
12秒前
打一豆豆完成签到,获得积分10
13秒前
英俊的铭应助仿生躯壳采纳,获得10
13秒前
14秒前
11发布了新的文献求助10
14秒前
Joker发布了新的文献求助10
14秒前
猪猪hero发布了新的文献求助10
14秒前
14秒前
wanci应助河道蟹采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641853
求助须知:如何正确求助?哪些是违规求助? 4757522
关于积分的说明 15015246
捐赠科研通 4800349
什么是DOI,文献DOI怎么找? 2565983
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483788