Computational identification of potential dipeptidyl peptidase (DPP)-IV inhibitors: Structure based virtual screening, molecular dynamics simulation and knowledge based SAR studies

化学 广告 磷酸西他列汀 虚拟筛选 生物信息学 二肽基肽酶-4 计算生物学 分子动力学 药理学 药物发现 生物化学 糖尿病 2型糖尿病 2型糖尿病 计算化学 医学 内分泌学 体外 基因 生物
作者
Virendra Nath,Manish Ramchandani,Neeraj Kumar,Renu Agrawal,Vipin Kumar
出处
期刊:Journal of Molecular Structure [Elsevier BV]
卷期号:1224: 129006-129006 被引量:9
标识
DOI:10.1016/j.molstruc.2020.129006
摘要

Type 2 Diabetes mellitus (T2DM) is a globally leading metabolic problem with increased morbidity and mortality. Current medication therapies in the market to control diabetes are not sufficient and therefore, there is further need to develop more selective and effective treatment approaches. Inhibition of Dipeptidyl-peptidase-IV (DPP-IV) enzyme may serve as an interesting target for developing novel anti-diabetic drug candidate. In the present study, hierarchical virtual screening of drug like compounds was done followed by molecular dynamics simulation and knowledge-based structure-activity relation (SAR) study in order to retrieve hit compound as prospective inhibitors of DPP-IV enzyme. Important amino acid residues present in the active target site were acknowledged as vital and were also found to have similar interactions with the potential hits. Further, in silico technique was undertaken to identify ubiquitous promising hits against DPP-IV enzyme and this was followed by calculation of binding energy and absorption, distribution, metabolism, excretion (ADME) prediction that could possibly support their pharmacokinetic prospective. Furthermore, stability study using molecular dynamics simulation of protein complex was accomplished with the most capable targeted hit established in the present study. In the end, comparative analysis of 3-dimensional binding pose, orientation and planar structure of the potential retrieved hit was done with marketed drugs (alogliptin and sitagliptin) in order to develop knowledge-based structure-activity relationship, which proved the successful designing of DPP-IV enzyme inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧书雪完成签到,获得积分10
2秒前
大大怪将军完成签到,获得积分10
3秒前
哈哈哈完成签到 ,获得积分0
3秒前
小怪完成签到,获得积分10
4秒前
爱吃泡芙完成签到,获得积分10
5秒前
白桃战士完成签到,获得积分10
6秒前
8秒前
qingchenwuhou完成签到 ,获得积分10
8秒前
XXX完成签到,获得积分10
9秒前
锡嘻完成签到 ,获得积分10
9秒前
10秒前
彗星入梦完成签到 ,获得积分10
10秒前
恋恋青葡萄完成签到,获得积分10
10秒前
隐形万言完成签到,获得积分10
12秒前
Time完成签到,获得积分10
12秒前
土木研学僧完成签到,获得积分10
13秒前
yjy完成签到 ,获得积分10
13秒前
A溶大美噶完成签到,获得积分10
13秒前
yar应助萨尔莫斯采纳,获得10
14秒前
Will发布了新的文献求助10
14秒前
美好的鹏笑完成签到,获得积分10
16秒前
啦啦啦啦啦完成签到,获得积分10
16秒前
LYegoist完成签到,获得积分10
18秒前
可爱的小丸子完成签到,获得积分10
18秒前
一川烟叶完成签到,获得积分10
20秒前
20秒前
23秒前
iFan完成签到 ,获得积分10
23秒前
萨尔莫斯完成签到,获得积分10
23秒前
合适靖儿完成签到 ,获得积分10
25秒前
林林林完成签到,获得积分10
26秒前
斯琪欣完成签到,获得积分10
27秒前
28秒前
MQQ完成签到 ,获得积分10
28秒前
meng发布了新的文献求助10
28秒前
29秒前
zxc167完成签到,获得积分10
29秒前
研友_nVWP2Z完成签到 ,获得积分10
31秒前
俭朴的半雪完成签到 ,获得积分10
32秒前
大橙子发布了新的文献求助10
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022