Computational identification of potential dipeptidyl peptidase (DPP)-IV inhibitors: Structure based virtual screening, molecular dynamics simulation and knowledge based SAR studies

化学 广告 磷酸西他列汀 虚拟筛选 生物信息学 二肽基肽酶-4 计算生物学 分子动力学 药理学 药物发现 生物化学 糖尿病 2型糖尿病 2型糖尿病 计算化学 医学 内分泌学 体外 基因 生物
作者
Virendra Nath,Manish Ramchandani,Neeraj Kumar,Renu Agrawal,Vipin Kumar
出处
期刊:Journal of Molecular Structure [Elsevier BV]
卷期号:1224: 129006-129006 被引量:9
标识
DOI:10.1016/j.molstruc.2020.129006
摘要

Type 2 Diabetes mellitus (T2DM) is a globally leading metabolic problem with increased morbidity and mortality. Current medication therapies in the market to control diabetes are not sufficient and therefore, there is further need to develop more selective and effective treatment approaches. Inhibition of Dipeptidyl-peptidase-IV (DPP-IV) enzyme may serve as an interesting target for developing novel anti-diabetic drug candidate. In the present study, hierarchical virtual screening of drug like compounds was done followed by molecular dynamics simulation and knowledge-based structure-activity relation (SAR) study in order to retrieve hit compound as prospective inhibitors of DPP-IV enzyme. Important amino acid residues present in the active target site were acknowledged as vital and were also found to have similar interactions with the potential hits. Further, in silico technique was undertaken to identify ubiquitous promising hits against DPP-IV enzyme and this was followed by calculation of binding energy and absorption, distribution, metabolism, excretion (ADME) prediction that could possibly support their pharmacokinetic prospective. Furthermore, stability study using molecular dynamics simulation of protein complex was accomplished with the most capable targeted hit established in the present study. In the end, comparative analysis of 3-dimensional binding pose, orientation and planar structure of the potential retrieved hit was done with marketed drugs (alogliptin and sitagliptin) in order to develop knowledge-based structure-activity relationship, which proved the successful designing of DPP-IV enzyme inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助深情凡灵采纳,获得10
刚刚
1秒前
小yy发布了新的文献求助10
1秒前
上官若男应助斯文明杰采纳,获得10
1秒前
bkagyin应助小远采纳,获得10
2秒前
3秒前
韧战发布了新的文献求助10
5秒前
好奇小怪发布了新的文献求助10
5秒前
乂氼驳回了思源应助
6秒前
7秒前
8秒前
355464328完成签到,获得积分10
8秒前
9秒前
Doctor_Mill完成签到,获得积分10
9秒前
10秒前
zzz发布了新的文献求助10
11秒前
11秒前
害羞映容发布了新的文献求助10
11秒前
瑜軒完成签到,获得积分10
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
简单海露发布了新的文献求助10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
甜甜玫瑰应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
14秒前
大个应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
侯大伟发布了新的文献求助10
15秒前
TNT应助科研通管家采纳,获得10
15秒前
Meyako应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633044
求助须知:如何正确求助?哪些是违规求助? 4029172
关于积分的说明 12466463
捐赠科研通 3715416
什么是DOI,文献DOI怎么找? 2050092
邀请新用户注册赠送积分活动 1081655
科研通“疑难数据库(出版商)”最低求助积分说明 963994