Using genetic algorithm to automate the generation of an open-plan office layout

平面图(考古学) 工作区 遗传算法 计算机科学 页面布局 过程(计算) 软件 工作站 软件工程 工业工程 工程类 工程制图 人工智能 机器学习 操作系统 广告 业务 考古 历史 机器人
作者
Chen Chen,Ricardo Jose Chacón Vega,Tiong Lee Kong
出处
期刊:International Journal of Architectural Computing [SAGE]
卷期号:19 (3): 449-465 被引量:13
标识
DOI:10.1177/1478077120943532
摘要

Today, the concept of open plan is more and more widely accepted that many companies have switched to open-plan offices. Their design is an issue in the scope of space layout planning. Although there are many professional architectural layout design software in the market, in the real life, office designers seldom use these tools because their license fees are usually expensive and using them to solve an open-plan office design is like using an overly powerful and expensive tool to fix a minor problem. Therefore, manual drafting through a trial and error process is most often used. This article attempts to propose a lightweight tool to automate open-plan office layout generation using a nested genetic algorithm optimization with two layers, where the inner layer algorithm is embedded in the outer one. The result is enhanced by a local search. The main objective is to maximize space utilization by maximizing the size of the open workspace. This approach is different from its precedents, in that the location search is conducted on a grid map rather than several pre-selected candidate locations. Consequently, the generated layout design presents a less rigid workstation arrangement, inviting a casual and unrestrictive work environment. The real potential of the approach is reflected in the productivity of test fits. Automating and simplifying the generation of layouts for test fits can tremendously decrease the amount of time and resources required to generate them. The experimental case study shows that the developed approach is powerful and effective, making it a totally automated process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
井小浩发布了新的文献求助10
1秒前
直率沂完成签到,获得积分10
2秒前
3秒前
Chenly发布了新的文献求助10
3秒前
080670发布了新的文献求助10
3秒前
包容如雪发布了新的文献求助10
4秒前
陌路发布了新的文献求助10
4秒前
今后应助KBYer采纳,获得10
4秒前
5秒前
6秒前
7秒前
lj完成签到,获得积分20
8秒前
9秒前
11111发布了新的文献求助10
9秒前
赘婿应助知性的新梅采纳,获得10
9秒前
等风的人发布了新的文献求助10
9秒前
清脆荟完成签到,获得积分20
9秒前
10秒前
scott发布了新的文献求助10
11秒前
hello发布了新的文献求助10
11秒前
平常的擎宇完成签到,获得积分10
11秒前
DIDIDI完成签到 ,获得积分10
11秒前
lin完成签到,获得积分10
11秒前
11秒前
AX完成签到,获得积分20
12秒前
Emma发布了新的文献求助30
13秒前
HCLonely应助妩媚的书易采纳,获得10
13秒前
li发布了新的文献求助30
13秒前
Orange应助等风的人采纳,获得10
13秒前
PG发布了新的文献求助10
14秒前
14秒前
粒子发布了新的文献求助10
15秒前
16秒前
Bake完成签到,获得积分10
18秒前
沉静秋尽发布了新的文献求助10
19秒前
张北北发布了新的文献求助10
19秒前
ym完成签到,获得积分10
19秒前
清脆荟发布了新的文献求助30
19秒前
曲书文完成签到,获得积分10
20秒前
alpv关注了科研通微信公众号
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228538
求助须知:如何正确求助?哪些是违规求助? 2876357
关于积分的说明 8194668
捐赠科研通 2543440
什么是DOI,文献DOI怎么找? 1373770
科研通“疑难数据库(出版商)”最低求助积分说明 646833
邀请新用户注册赠送积分活动 621413