已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using genetic algorithm to automate the generation of an open-plan office layout

平面图(考古学) 工作区 遗传算法 计算机科学 页面布局 过程(计算) 软件 工作站 软件工程 工业工程 工程类 工程制图 人工智能 机器学习 操作系统 广告 业务 考古 历史 机器人
作者
Chen Chen,Ricardo Jose Chacón Vega,Tiong Lee Kong
出处
期刊:International Journal of Architectural Computing [SAGE Publishing]
卷期号:19 (3): 449-465 被引量:13
标识
DOI:10.1177/1478077120943532
摘要

Today, the concept of open plan is more and more widely accepted that many companies have switched to open-plan offices. Their design is an issue in the scope of space layout planning. Although there are many professional architectural layout design software in the market, in the real life, office designers seldom use these tools because their license fees are usually expensive and using them to solve an open-plan office design is like using an overly powerful and expensive tool to fix a minor problem. Therefore, manual drafting through a trial and error process is most often used. This article attempts to propose a lightweight tool to automate open-plan office layout generation using a nested genetic algorithm optimization with two layers, where the inner layer algorithm is embedded in the outer one. The result is enhanced by a local search. The main objective is to maximize space utilization by maximizing the size of the open workspace. This approach is different from its precedents, in that the location search is conducted on a grid map rather than several pre-selected candidate locations. Consequently, the generated layout design presents a less rigid workstation arrangement, inviting a casual and unrestrictive work environment. The real potential of the approach is reflected in the productivity of test fits. Automating and simplifying the generation of layouts for test fits can tremendously decrease the amount of time and resources required to generate them. The experimental case study shows that the developed approach is powerful and effective, making it a totally automated process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
5秒前
超级臻完成签到,获得积分10
9秒前
10秒前
YP_024完成签到,获得积分10
11秒前
座头鲸发布了新的文献求助10
11秒前
公西傲蕾发布了新的文献求助10
11秒前
12秒前
a553355发布了新的文献求助10
13秒前
领导范儿应助Dan采纳,获得30
13秒前
14秒前
Magali应助ivy采纳,获得30
14秒前
隐形曼青应助ivy采纳,获得30
14秒前
宋美美发布了新的文献求助10
15秒前
一毛钱买两颗糖完成签到,获得积分10
19秒前
学术笨蛋完成签到,获得积分10
19秒前
公西傲蕾完成签到,获得积分10
22秒前
大白包子李完成签到,获得积分10
22秒前
25秒前
25秒前
邵邵完成签到,获得积分10
29秒前
寒冷的绿真完成签到 ,获得积分10
30秒前
猪猪hero应助周佳雯采纳,获得10
30秒前
猪猪hero应助殷启维采纳,获得10
30秒前
深情安青应助hzz采纳,获得10
30秒前
31秒前
su发布了新的文献求助10
34秒前
共享精神应助吾月采纳,获得10
39秒前
怜熙完成签到 ,获得积分10
40秒前
华仔应助a553355采纳,获得10
41秒前
zhenzheng完成签到 ,获得积分10
45秒前
NexusExplorer应助郭娅楠采纳,获得10
46秒前
白玫瑰发布了新的文献求助10
51秒前
Hello应助LJQ采纳,获得10
51秒前
NexusExplorer应助max采纳,获得10
53秒前
55秒前
Margaret完成签到 ,获得积分10
56秒前
舒萼完成签到,获得积分10
56秒前
58秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959927
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128074
捐赠科研通 3238096
什么是DOI,文献DOI怎么找? 1789502
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024