A modified particle swarm optimization using adaptive strategy

计算机科学 粒子群优化 数学优化 元启发式 多群优化 群体行为 适应性策略 人工智能 机器学习 数学 历史 考古
作者
Hao Liu,XuWei Zhang,Liangping Tu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:152: 113353-113353 被引量:139
标识
DOI:10.1016/j.eswa.2020.113353
摘要

In expert systems, complex optimization problems are usually nonlinear, nonconvex, multimodal and discontinuous. As an efficient and simple optimization algorithm, particle swarm optimization(PSO) has been widely applied to solve various real optimization problems in expert systems. However, avoiding premature convergence and balancing the global exploration and local exploitation capabilities of the PSO remains an open issue. To overcome these drawbacks and strengthen the ability of PSO in solving complex optimization problems, a modified PSO using adaptive strategy called MPSO is proposed. In MPSO, in order to well balance the global exploration and local exploitation capabilities of the PSO, a chaos-based non-linear inertia weight is proposed. Meanwhile, to avoid the premature convergence, stochastic and mainstream learning strategies are adopted. Finally, an adaptive position updating strategy and terminal replacement mechanism are employed to enhance PSO’s ability to solve complex optimization problems in expert systems. 30 complex CEC2017 benchmark functions are utilized to verify the promising performance of MPSO, experimental results and statistical analysis indicate that MPSO has competitive performance compared with 16 state-of-the-art algorithms. The source code of MPSO is provided at https://github.com/lhustl/MPSO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助bettle采纳,获得10
刚刚
科研通AI5应助包容的剑采纳,获得10
1秒前
打打应助st采纳,获得10
1秒前
别潜然发布了新的文献求助10
2秒前
耍酷含芙发布了新的文献求助10
4秒前
5秒前
宽宽发布了新的文献求助10
5秒前
一期愈合完成签到,获得积分10
5秒前
科研通AI2S应助tzy采纳,获得10
6秒前
李健应助我www采纳,获得10
6秒前
见字如面完成签到,获得积分10
6秒前
7秒前
9秒前
9秒前
你为什么不学习完成签到 ,获得积分10
10秒前
悦果完成签到 ,获得积分10
10秒前
打打应助yyydd采纳,获得10
11秒前
sasha发布了新的文献求助10
11秒前
上官若男应助驰驰采纳,获得10
13秒前
xwl发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
我www发布了新的文献求助10
17秒前
包容的剑发布了新的文献求助10
17秒前
18秒前
18秒前
lfc发布了新的文献求助30
19秒前
19秒前
宽宽完成签到,获得积分10
21秒前
Ava应助tad81采纳,获得10
22秒前
22秒前
22秒前
yyydd发布了新的文献求助10
22秒前
打开链接L发布了新的文献求助10
23秒前
斯文败类应助独特迎竹采纳,获得30
24秒前
25秒前
25秒前
26秒前
驰驰发布了新的文献求助10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542916
求助须知:如何正确求助?哪些是违规求助? 3120308
关于积分的说明 9342102
捐赠科研通 2818290
什么是DOI,文献DOI怎么找? 1549524
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978