A modified particle swarm optimization using adaptive strategy

计算机科学 粒子群优化 数学优化 元启发式 多群优化 群体行为 适应性策略 人工智能 机器学习 数学 历史 考古
作者
Hao Liu,XuWei Zhang,Liangping Tu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:152: 113353-113353 被引量:144
标识
DOI:10.1016/j.eswa.2020.113353
摘要

In expert systems, complex optimization problems are usually nonlinear, nonconvex, multimodal and discontinuous. As an efficient and simple optimization algorithm, particle swarm optimization(PSO) has been widely applied to solve various real optimization problems in expert systems. However, avoiding premature convergence and balancing the global exploration and local exploitation capabilities of the PSO remains an open issue. To overcome these drawbacks and strengthen the ability of PSO in solving complex optimization problems, a modified PSO using adaptive strategy called MPSO is proposed. In MPSO, in order to well balance the global exploration and local exploitation capabilities of the PSO, a chaos-based non-linear inertia weight is proposed. Meanwhile, to avoid the premature convergence, stochastic and mainstream learning strategies are adopted. Finally, an adaptive position updating strategy and terminal replacement mechanism are employed to enhance PSO’s ability to solve complex optimization problems in expert systems. 30 complex CEC2017 benchmark functions are utilized to verify the promising performance of MPSO, experimental results and statistical analysis indicate that MPSO has competitive performance compared with 16 state-of-the-art algorithms. The source code of MPSO is provided at https://github.com/lhustl/MPSO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lemperory发布了新的文献求助10
刚刚
夏天完成签到,获得积分10
2秒前
伯赏元彤完成签到,获得积分10
2秒前
3秒前
陶醉滑板完成签到,获得积分10
4秒前
6秒前
月桂氮卓酮完成签到,获得积分10
6秒前
一期一会完成签到,获得积分10
7秒前
桐桐应助KAIk采纳,获得10
7秒前
汤圆完成签到,获得积分10
8秒前
10秒前
飘逸的苡完成签到 ,获得积分20
10秒前
maybe发布了新的文献求助10
10秒前
Akim应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
11秒前
华仔应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
judy应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
pcr163应助科研通管家采纳,获得150
11秒前
烟花应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
bkagyin应助yangzai采纳,获得10
13秒前
桃子完成签到,获得积分10
13秒前
Wangtt关注了科研通微信公众号
13秒前
14秒前
五五发布了新的文献求助10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961189
求助须知:如何正确求助?哪些是违规求助? 3507456
关于积分的说明 11136282
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790545
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803152