A modified particle swarm optimization using adaptive strategy

计算机科学 粒子群优化 数学优化 元启发式 多群优化 群体行为 适应性策略 人工智能 机器学习 数学 历史 考古
作者
Hao Liu,XuWei Zhang,Liangping Tu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:152: 113353-113353 被引量:164
标识
DOI:10.1016/j.eswa.2020.113353
摘要

In expert systems, complex optimization problems are usually nonlinear, nonconvex, multimodal and discontinuous. As an efficient and simple optimization algorithm, particle swarm optimization(PSO) has been widely applied to solve various real optimization problems in expert systems. However, avoiding premature convergence and balancing the global exploration and local exploitation capabilities of the PSO remains an open issue. To overcome these drawbacks and strengthen the ability of PSO in solving complex optimization problems, a modified PSO using adaptive strategy called MPSO is proposed. In MPSO, in order to well balance the global exploration and local exploitation capabilities of the PSO, a chaos-based non-linear inertia weight is proposed. Meanwhile, to avoid the premature convergence, stochastic and mainstream learning strategies are adopted. Finally, an adaptive position updating strategy and terminal replacement mechanism are employed to enhance PSO’s ability to solve complex optimization problems in expert systems. 30 complex CEC2017 benchmark functions are utilized to verify the promising performance of MPSO, experimental results and statistical analysis indicate that MPSO has competitive performance compared with 16 state-of-the-art algorithms. The source code of MPSO is provided at https://github.com/lhustl/MPSO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小不完成签到 ,获得积分10
1秒前
科研通AI2S应助Y.J采纳,获得10
1秒前
提莫蘑菇完成签到,获得积分10
1秒前
2秒前
然也完成签到,获得积分10
4秒前
闫小闫完成签到 ,获得积分10
5秒前
吴天春完成签到,获得积分10
5秒前
濮阳盼曼完成签到,获得积分10
5秒前
6秒前
7秒前
上官若男应助风清扬采纳,获得10
7秒前
张一完成签到,获得积分10
9秒前
11秒前
11秒前
11秒前
xiaofenzi完成签到,获得积分10
12秒前
12秒前
朴实钥匙完成签到,获得积分10
12秒前
炎炎夏无声完成签到 ,获得积分10
13秒前
13秒前
13秒前
14秒前
upup完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
csg888888完成签到,获得积分10
15秒前
且欣且行完成签到 ,获得积分20
15秒前
15秒前
15秒前
16秒前
真的苦逼完成签到,获得积分10
16秒前
BHM发布了新的文献求助10
17秒前
19秒前
mojito完成签到 ,获得积分10
19秒前
19秒前
19秒前
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066805
求助须知:如何正确求助?哪些是违规求助? 4288731
关于积分的说明 13360444
捐赠科研通 4108126
什么是DOI,文献DOI怎么找? 2249514
邀请新用户注册赠送积分活动 1254960
关于科研通互助平台的介绍 1187429