运动规划
强化学习
计算机科学
运动学
机器人
机器人运动学
运动(物理)
任务(项目管理)
对偶(语法数字)
人工智能
反向动力学
数学优化
模拟
工程类
移动机器人
数学
经典力学
物理
文学类
艺术
系统工程
作者
Mengying Tang,Xiaofei Yue,Zhan Zuo,Xiaoping Huang,Yanfang Liu,Naiming Qi
出处
期刊:2019 IEEE International Conference on Unmanned Systems (ICUS)
日期:2019-10-01
被引量:6
标识
DOI:10.1109/icus48101.2019.8996069
摘要
In this paper, we focus on coordinated motion planning of dual-arm robot. The kinematics model of the robotic arm is established by Denavit-Hartenberg (D-H) coordinate method and the mathematical model of the cooperative motion planning problem is established. The rapidly-exploring random trees (RRT) algorithm and the deep deterministic policy gradient (DDPG) algorithm are used to carry out dual-arm coordinated motion planning, respectively. The simulation results show that these algorithms can effectively complete the robot arm motion planning task, but the RRT improved algorithm cannot balance the planning efficiency and result optimization. Compared with the RRT algorithm, the DDPG algorithm trains the model through continuous trial and error to optimize its planning strategy. The trained model can be used to obtain an optimized path and it can ensure the efficiency of the planning with the optimized strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI