Deep learning in environmental remote sensing: Achievements and challenges

遥感 计算机科学 环境科学 地质学
作者
Qiangqiang Yuan,Huanfeng Shen,Tongwen Li,Zhiwei Li,Shuwen Li,Yun Jiang,Hongzhang Xu,Weiwei Tan,Qianqian Yang,Jiwen Wang,Jianhao Gao,Liangpei Zhang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:241: 111716-111716 被引量:1069
标识
DOI:10.1016/j.rse.2020.111716
摘要

Various forms of machine learning (ML) methods have historically played a valuable role in environmental remote sensing research. With an increasing amount of “big data” from earth observation and rapid advances in ML, increasing opportunities for novel methods have emerged to aid in earth environmental monitoring. Over the last decade, a typical and state-of-the-art ML framework named deep learning (DL), which is developed from the traditional neural network (NN), has outperformed traditional models with considerable improvement in performance. Substantial progress in developing a DL methodology for a variety of earth science applications has been observed. Therefore, this review will concentrate on the use of the traditional NN and DL methods to advance the environmental remote sensing process. First, the potential of DL in environmental remote sensing, including land cover mapping, environmental parameter retrieval, data fusion and downscaling, and information reconstruction and prediction, will be analyzed. A typical network structure will then be introduced. Afterward, the applications of DL environmental monitoring in the atmosphere, vegetation, hydrology, air and land surface temperature, evapotranspiration, solar radiation, and ocean color are specifically reviewed. Finally, challenges and future perspectives will be comprehensively analyzed and discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiaolulu发布了新的文献求助10
刚刚
忧郁鸣凤发布了新的文献求助10
1秒前
建新发布了新的文献求助10
1秒前
科目三应助多情的映波采纳,获得10
1秒前
1秒前
不安流沙发布了新的文献求助10
2秒前
3秒前
好好学习发布了新的文献求助10
4秒前
打打应助Christina采纳,获得10
4秒前
4秒前
个性松发布了新的文献求助10
5秒前
如虎添亿完成签到,获得积分10
6秒前
7秒前
jiaolulu完成签到,获得积分10
7秒前
搜集达人应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得30
9秒前
嗯哼应助科研通管家采纳,获得10
9秒前
行隐应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
VDC应助科研通管家采纳,获得20
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
VDC应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
嗯哼应助科研通管家采纳,获得20
10秒前
joplinJIA应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得30
10秒前
海棠依旧发布了新的文献求助10
10秒前
10秒前
巧克力饼干应助忧郁鸣凤采纳,获得30
13秒前
13秒前
搜集达人应助绝尘采纳,获得10
14秒前
14秒前
拉格朗日发布了新的文献求助10
15秒前
15秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214044
求助须知:如何正确求助?哪些是违规求助? 2862795
关于积分的说明 8135296
捐赠科研通 2529012
什么是DOI,文献DOI怎么找? 1363150
科研通“疑难数据库(出版商)”最低求助积分说明 643769
邀请新用户注册赠送积分活动 616200