Individual tree crown segmentation based on aerial image using superpixel and topological features

分割 人工智能 图像分割 树(集合论) 模式识别(心理学) 相似性(几何) 计算机科学 像素 最小生成树 数学 聚类分析 边界(拓扑) 生成树 计算机视觉 图像(数学) 算法 组合数学 数学分析
作者
Yuhan Zhou,Li-Wen Wang,Kang Jiang,Lianfeng Xue,Feng An,Bangqian Chen,Ting Yun
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:14 (02): 1-1 被引量:10
标识
DOI:10.1117/1.jrs.14.022210
摘要

The individual tree crown (ITC) segmentation algorithm based on aerial images is a prerequisite for understanding tree growth, tree species competition, and biomass assessment. We combine superpixel segmentation and topological graph methods to separate the ITC effectively from aerial images. First, the aerial images of forest plots captured by drones was segmented by simple linear iterative clustering of superpixel algorithm, and the crown boundaries of aerial images were obtained by deep learning concept of holistically nested edge detection (HED) network. Second, the similarity weights of neighboring superpixels were measured by three indices, i.e., the difference in color value, the number of intersecting pixels, and the number of boundary pixels defined by HED network in the intersecting area. Finally, the minimum spanning tree topological method was adopted to generate the connected trees of aerial images at the superpixel scale, and the superpixels were merged to realize ITC segmentation depending on the calculated similarity weights. This method was tested on the aerial images of three forest plots with different stand structural features, and the accuracies of the algorithm were evaluated by comparing the results of our algorithm with field measurements. Mixed growth of the withered trees and healthy trees is in the forest plot 1, which complicates the ITC segmentation process and only achieves 86% accuracy. The forest plot 2 with same tree species and approximately sized tree crowns obtains the highest ITC accuracy of 92%. The forest plot 3 has various sizes of tree crowns and is influenced by the upper-right solar illumination, which increases the difficulty of ITC segmentation using our algorithm and obtains 87% accuracy. Overall, the method proposed has promising potential for ITC segmentation from forest aerial images, which provides a new concept based on image processing technique suitable for various types of forests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Cullen完成签到 ,获得积分20
2秒前
pqy发布了新的文献求助10
2秒前
田様应助ppkdc采纳,获得10
2秒前
择一完成签到,获得积分10
2秒前
3秒前
又又完成签到,获得积分10
3秒前
zzzyyyuuu完成签到 ,获得积分10
3秒前
3秒前
4秒前
以柠发布了新的文献求助30
5秒前
无花果应助西瓜采纳,获得10
5秒前
芸沐发布了新的文献求助10
5秒前
max发布了新的文献求助10
5秒前
孙刚发布了新的文献求助10
6秒前
叮当发布了新的文献求助10
6秒前
舒心的依风完成签到,获得积分10
6秒前
专业美女制造完成签到,获得积分10
6秒前
cure发布了新的文献求助10
6秒前
6秒前
薇薇安发布了新的文献求助10
7秒前
7秒前
ZZZ完成签到,获得积分10
7秒前
禁止通行发布了新的文献求助10
7秒前
酷酷的傲之完成签到,获得积分10
8秒前
Ava应助枝江小学生采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
Clown完成签到,获得积分10
10秒前
10秒前
囿于一隅完成签到,获得积分10
11秒前
11秒前
酒笙完成签到,获得积分10
12秒前
Ava应助活泼的寄风采纳,获得10
13秒前
寒冷的世界完成签到 ,获得积分10
13秒前
行7发布了新的文献求助10
13秒前
帕尼灬尼发布了新的文献求助10
13秒前
Owen应助江边鸟采纳,获得30
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635