Individual tree crown segmentation based on aerial image using superpixel and topological features

分割 人工智能 图像分割 树(集合论) 模式识别(心理学) 相似性(几何) 计算机科学 像素 最小生成树 数学 聚类分析 边界(拓扑) 生成树 计算机视觉 图像(数学) 算法 组合数学 数学分析
作者
Yuhan Zhou,Li-Wen Wang,Kang Jiang,Lianfeng Xue,Feng An,Bangqian Chen,Ting Yun
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:14 (02): 1-1 被引量:10
标识
DOI:10.1117/1.jrs.14.022210
摘要

The individual tree crown (ITC) segmentation algorithm based on aerial images is a prerequisite for understanding tree growth, tree species competition, and biomass assessment. We combine superpixel segmentation and topological graph methods to separate the ITC effectively from aerial images. First, the aerial images of forest plots captured by drones was segmented by simple linear iterative clustering of superpixel algorithm, and the crown boundaries of aerial images were obtained by deep learning concept of holistically nested edge detection (HED) network. Second, the similarity weights of neighboring superpixels were measured by three indices, i.e., the difference in color value, the number of intersecting pixels, and the number of boundary pixels defined by HED network in the intersecting area. Finally, the minimum spanning tree topological method was adopted to generate the connected trees of aerial images at the superpixel scale, and the superpixels were merged to realize ITC segmentation depending on the calculated similarity weights. This method was tested on the aerial images of three forest plots with different stand structural features, and the accuracies of the algorithm were evaluated by comparing the results of our algorithm with field measurements. Mixed growth of the withered trees and healthy trees is in the forest plot 1, which complicates the ITC segmentation process and only achieves 86% accuracy. The forest plot 2 with same tree species and approximately sized tree crowns obtains the highest ITC accuracy of 92%. The forest plot 3 has various sizes of tree crowns and is influenced by the upper-right solar illumination, which increases the difficulty of ITC segmentation using our algorithm and obtains 87% accuracy. Overall, the method proposed has promising potential for ITC segmentation from forest aerial images, which provides a new concept based on image processing technique suitable for various types of forests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
OncE发布了新的文献求助10
1秒前
深情安青应助zjujirenjie采纳,获得10
2秒前
yangyyyy完成签到 ,获得积分10
2秒前
HEIKU应助木子李采纳,获得10
5秒前
6秒前
7秒前
9秒前
10秒前
顺利的寒云完成签到,获得积分10
11秒前
乐乐应助可爱小笼包采纳,获得10
12秒前
12秒前
灵巧的坤发布了新的文献求助10
14秒前
abjz完成签到,获得积分10
15秒前
华仔应助丹三采纳,获得10
15秒前
15秒前
忧虑的靖巧完成签到 ,获得积分10
17秒前
小二郎应助仲夏采纳,获得10
20秒前
21秒前
xywang完成签到,获得积分10
23秒前
wy.he应助称心砖头采纳,获得10
24秒前
26秒前
天润佳苑发布了新的文献求助10
27秒前
27秒前
suwan完成签到,获得积分10
27秒前
28秒前
梁筱筱发布了新的文献求助10
29秒前
苏博儿发布了新的文献求助10
31秒前
科研通AI2S应助guo采纳,获得10
32秒前
黯然发布了新的文献求助10
33秒前
丹三发布了新的文献求助10
34秒前
34秒前
34秒前
37秒前
38秒前
Jasper应助黯然采纳,获得10
38秒前
两酒窝完成签到,获得积分10
41秒前
linxue发布了新的文献求助10
41秒前
JJ完成签到,获得积分10
41秒前
chenlihuan完成签到,获得积分10
42秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343057
求助须知:如何正确求助?哪些是违规求助? 2970087
关于积分的说明 8642705
捐赠科研通 2650072
什么是DOI,文献DOI怎么找? 1451108
科研通“疑难数据库(出版商)”最低求助积分说明 672099
邀请新用户注册赠送积分活动 661407