Individual tree crown segmentation based on aerial image using superpixel and topological features

分割 人工智能 图像分割 树(集合论) 模式识别(心理学) 相似性(几何) 计算机科学 像素 最小生成树 数学 聚类分析 边界(拓扑) 生成树 计算机视觉 图像(数学) 算法 组合数学 数学分析
作者
Yuhan Zhou,Li-Wen Wang,Kang Jiang,Lianfeng Xue,Feng An,Bangqian Chen,Ting Yun
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:14 (02): 1-1 被引量:10
标识
DOI:10.1117/1.jrs.14.022210
摘要

The individual tree crown (ITC) segmentation algorithm based on aerial images is a prerequisite for understanding tree growth, tree species competition, and biomass assessment. We combine superpixel segmentation and topological graph methods to separate the ITC effectively from aerial images. First, the aerial images of forest plots captured by drones was segmented by simple linear iterative clustering of superpixel algorithm, and the crown boundaries of aerial images were obtained by deep learning concept of holistically nested edge detection (HED) network. Second, the similarity weights of neighboring superpixels were measured by three indices, i.e., the difference in color value, the number of intersecting pixels, and the number of boundary pixels defined by HED network in the intersecting area. Finally, the minimum spanning tree topological method was adopted to generate the connected trees of aerial images at the superpixel scale, and the superpixels were merged to realize ITC segmentation depending on the calculated similarity weights. This method was tested on the aerial images of three forest plots with different stand structural features, and the accuracies of the algorithm were evaluated by comparing the results of our algorithm with field measurements. Mixed growth of the withered trees and healthy trees is in the forest plot 1, which complicates the ITC segmentation process and only achieves 86% accuracy. The forest plot 2 with same tree species and approximately sized tree crowns obtains the highest ITC accuracy of 92%. The forest plot 3 has various sizes of tree crowns and is influenced by the upper-right solar illumination, which increases the difficulty of ITC segmentation using our algorithm and obtains 87% accuracy. Overall, the method proposed has promising potential for ITC segmentation from forest aerial images, which provides a new concept based on image processing technique suitable for various types of forests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光发布了新的文献求助20
刚刚
华仔应助123456采纳,获得10
刚刚
4秒前
5秒前
Ccccsa完成签到,获得积分20
6秒前
乐乐应助石榴汁的书采纳,获得10
6秒前
7秒前
7秒前
怕孤单的绝义完成签到,获得积分10
7秒前
顺利寻真发布了新的文献求助20
8秒前
9秒前
英俊的铭应助无极微光采纳,获得10
9秒前
失眠洋葱发布了新的文献求助10
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
pluto应助ZX采纳,获得10
11秒前
12秒前
小木林发布了新的文献求助10
12秒前
sunny发布了新的文献求助10
13秒前
14秒前
hzt完成签到,获得积分20
15秒前
JM关闭了JM文献求助
15秒前
辛勤的绮琴完成签到,获得积分10
17秒前
无极微光发布了新的文献求助10
19秒前
木泽完成签到,获得积分10
19秒前
科研通AI6应助hzt采纳,获得10
20秒前
小木林完成签到,获得积分10
20秒前
20秒前
天苍野茫发布了新的文献求助10
21秒前
21秒前
asd应助kexian_ning采纳,获得30
22秒前
23秒前
24秒前
25秒前
25秒前
yjf,123发布了新的文献求助10
26秒前
东方元语应助无极微光采纳,获得20
26秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031