Compound fault diagnosis of rolling element bearings using multipoint sparsity–multipoint optimal minimum entropy deconvolution adjustment and adaptive resonance-based signal sparse decomposition

算法 脉冲(物理) 计算机科学 熵(时间箭头) 滚动轴承 控制理论(社会学) 振动 声学 人工智能 物理 量子力学 控制(管理)
作者
Ji Wei Fan,Yongsheng Qi,Xuejin Gao,Yongting Li,Wang Lin
出处
期刊:Journal of Vibration and Control [SAGE]
卷期号:27 (11-12): 1212-1230 被引量:17
标识
DOI:10.1177/1077546320938199
摘要

The rolling element bearings used in rotating machinery generally include multiple coexisting defects. However, individual defect–induced signals of bearings simultaneously arising from multiple defects are difficult to extract from measured vibration signals because the impulse-like fault signals are very weak, and the vibration signal is commonly affected by the transmission path and various sources of interference. This issue is addressed in this study by proposing a new compound fault feature extraction scheme. Vibration signals are first preprocessed using resonance-based signal sparse decomposition to obtain the low-resonance component of the signal, which contains the information related to the transient fault–induced impulse signals, and reduce the interference of discrete harmonic signal components and noise. The objective used for adaptively selecting the optimal resonance-based signal sparse decomposition parameters adopts the ratio of permutation entropy to the frequency domain kurtosis, as a new comprehensive index, and the optimization is conducted using the cuckoo search algorithm. Subsequently, we apply multipoint sparsity to the low-resonance component to automatically determine the possible number of impulse signals and their periods according to the peak multipoint sparsity values. This enables the targeted extraction and isolation of fault-induced impulse signal features by multipoint optimal minimum entropy deconvolution adjustment. Finally, the envelope spectrum of the filtered signal is used to identify the individual faults. The effectiveness of the proposed scheme is verified by its application to both simulated and experimental compound bearing fault vibration signals with strong interference, and its advantages are confirmed by comparisons of the results with those of an existing state-of-the-art method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦里发布了新的文献求助10
刚刚
falcon完成签到 ,获得积分10
1秒前
劈里啪啦发布了新的文献求助10
2秒前
耿强发布了新的文献求助10
2秒前
科研通AI5应助坚强的樱采纳,获得10
2秒前
陈杰发布了新的文献求助10
2秒前
nozero完成签到,获得积分10
4秒前
澜生发布了新的文献求助10
5秒前
在水一方应助惠惠采纳,获得10
5秒前
852应助zZ采纳,获得10
5秒前
小马甲应助陌路采纳,获得10
6秒前
1335804518完成签到 ,获得积分10
7秒前
7秒前
甜甜醉波完成签到,获得积分10
7秒前
科研通AI2S应助卷卷王采纳,获得10
8秒前
可爱的函函应助梦里采纳,获得10
8秒前
沐晴完成签到,获得积分10
9秒前
入夏完成签到,获得积分10
9秒前
9秒前
9秒前
苏州小北发布了新的文献求助10
10秒前
10秒前
snail完成签到,获得积分10
11秒前
劈里啪啦完成签到,获得积分10
11秒前
wanci应助Jasmine采纳,获得10
12秒前
aoxiangcaizi12完成签到,获得积分10
12秒前
ding应助通~采纳,获得30
13秒前
14秒前
Annie发布了新的文献求助10
14秒前
晨曦完成签到,获得积分10
15秒前
十一发布了新的文献求助10
15秒前
顾矜应助Peter采纳,获得30
16秒前
Ayanami完成签到,获得积分10
16秒前
英俊的铭应助ysl采纳,获得30
16秒前
酷波er应助范范采纳,获得10
16秒前
17秒前
Akim应助damian采纳,获得30
17秒前
17秒前
19秒前
番茄炒西红柿完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794