Compound fault diagnosis of rolling element bearings using multipoint sparsity–multipoint optimal minimum entropy deconvolution adjustment and adaptive resonance-based signal sparse decomposition

算法 脉冲(物理) 计算机科学 熵(时间箭头) 滚动轴承 控制理论(社会学) 振动 声学 人工智能 物理 量子力学 控制(管理)
作者
Ji Wei Fan,Yongsheng Qi,Xuejin Gao,Yongting Li,Wang Lin
出处
期刊:Journal of Vibration and Control [SAGE]
卷期号:27 (11-12): 1212-1230 被引量:17
标识
DOI:10.1177/1077546320938199
摘要

The rolling element bearings used in rotating machinery generally include multiple coexisting defects. However, individual defect–induced signals of bearings simultaneously arising from multiple defects are difficult to extract from measured vibration signals because the impulse-like fault signals are very weak, and the vibration signal is commonly affected by the transmission path and various sources of interference. This issue is addressed in this study by proposing a new compound fault feature extraction scheme. Vibration signals are first preprocessed using resonance-based signal sparse decomposition to obtain the low-resonance component of the signal, which contains the information related to the transient fault–induced impulse signals, and reduce the interference of discrete harmonic signal components and noise. The objective used for adaptively selecting the optimal resonance-based signal sparse decomposition parameters adopts the ratio of permutation entropy to the frequency domain kurtosis, as a new comprehensive index, and the optimization is conducted using the cuckoo search algorithm. Subsequently, we apply multipoint sparsity to the low-resonance component to automatically determine the possible number of impulse signals and their periods according to the peak multipoint sparsity values. This enables the targeted extraction and isolation of fault-induced impulse signal features by multipoint optimal minimum entropy deconvolution adjustment. Finally, the envelope spectrum of the filtered signal is used to identify the individual faults. The effectiveness of the proposed scheme is verified by its application to both simulated and experimental compound bearing fault vibration signals with strong interference, and its advantages are confirmed by comparisons of the results with those of an existing state-of-the-art method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助yuzhanli采纳,获得10
2秒前
舆上帝同行关注了科研通微信公众号
3秒前
4秒前
echo发布了新的文献求助10
4秒前
5秒前
俭朴的誉完成签到 ,获得积分10
6秒前
fifteen发布了新的文献求助10
6秒前
6秒前
Splaink完成签到 ,获得积分10
6秒前
123完成签到,获得积分10
8秒前
英俊凡霜发布了新的文献求助20
10秒前
朱大帅完成签到,获得积分10
10秒前
超级瑶瑶发布了新的文献求助10
12秒前
孙行者完成签到,获得积分10
12秒前
英姑应助灵巧的山水采纳,获得10
13秒前
充电宝应助寒冷荧荧采纳,获得10
13秒前
要减肥金针菇完成签到,获得积分10
15秒前
小二郎应助echo采纳,获得10
15秒前
17秒前
Renee应助橙子采纳,获得10
18秒前
NexusExplorer应助清清子采纳,获得10
19秒前
彭于彦祖应助linxgyu采纳,获得30
20秒前
22秒前
22秒前
情怀应助追光少年采纳,获得10
24秒前
26秒前
dpp发布了新的文献求助10
26秒前
27秒前
27秒前
28秒前
我的文献发布了新的文献求助10
29秒前
29秒前
fifteen发布了新的文献求助10
29秒前
聪明飞飞完成签到,获得积分10
29秒前
扶苏发布了新的文献求助10
30秒前
30秒前
dpp完成签到,获得积分20
30秒前
过时的笙完成签到,获得积分10
30秒前
田填填完成签到 ,获得积分10
31秒前
KKK完成签到,获得积分10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160857
求助须知:如何正确求助?哪些是违规求助? 2812058
关于积分的说明 7894301
捐赠科研通 2470980
什么是DOI,文献DOI怎么找? 1315808
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602068