Functional Regression

功能数据分析 回归分析 回归 计算机科学 人口 正规化(语言学) 时间轴 计量经济学 统计 人工智能 数学 机器学习 医学 环境卫生
作者
Jeffrey S. Morris
出处
期刊:Annual review of statistics and its application [Annual Reviews]
卷期号:2 (1): 321-359 被引量:241
标识
DOI:10.1146/annurev-statistics-010814-020413
摘要

Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay & Silverman's (1997) textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article focuses on functional regression, the area of FDA that has received the most attention in applications and methodological development. First, there is an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: (a) functional predictor regression (scalar-on-function), (b) functional response regression (function-on-scalar), and (c) function-on-function regression. For each, the role of replication and regularization is discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. The review concludes with a brief discussion describing potential areas of future development in this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫西完成签到,获得积分20
刚刚
wow完成签到,获得积分10
刚刚
刚刚
2秒前
4秒前
bluekids完成签到,获得积分10
5秒前
me发布了新的文献求助10
5秒前
5秒前
恁时发布了新的文献求助10
5秒前
Ronnie发布了新的文献求助10
6秒前
7秒前
errui发布了新的文献求助20
8秒前
共享精神应助橘猫采纳,获得10
8秒前
金平卢仙发布了新的文献求助10
8秒前
8秒前
liguyi完成签到,获得积分10
9秒前
tdtk发布了新的文献求助10
11秒前
11秒前
科研宇完成签到,获得积分10
12秒前
萤火微光发布了新的文献求助20
13秒前
13秒前
14秒前
hywel发布了新的文献求助10
14秒前
笨笨的蜡烛完成签到,获得积分10
15秒前
田様应助晓湫采纳,获得10
15秒前
15秒前
17秒前
19秒前
19秒前
田様应助美好焦采纳,获得10
20秒前
20秒前
CipherSage应助橘猫采纳,获得10
20秒前
阳佟靖柏发布了新的文献求助10
21秒前
21秒前
倾城完成签到,获得积分10
21秒前
大模型应助Jiuuu采纳,获得10
21秒前
22秒前
所所应助yuanyuan采纳,获得30
22秒前
23秒前
smiles发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953047
求助须知:如何正确求助?哪些是违规求助? 3498423
关于积分的说明 11091889
捐赠科研通 3229062
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869228
科研通“疑难数据库(出版商)”最低求助积分说明 801415