Functional Regression

功能数据分析 回归分析 回归 计算机科学 人口 正规化(语言学) 时间轴 计量经济学 统计 人工智能 数学 机器学习 医学 环境卫生
作者
Jeffrey S. Morris
出处
期刊:Annual review of statistics and its application [Annual Reviews]
卷期号:2 (1): 321-359 被引量:241
标识
DOI:10.1146/annurev-statistics-010814-020413
摘要

Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay & Silverman's (1997) textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article focuses on functional regression, the area of FDA that has received the most attention in applications and methodological development. First, there is an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: (a) functional predictor regression (scalar-on-function), (b) functional response regression (function-on-scalar), and (c) function-on-function regression. For each, the role of replication and regularization is discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. The review concludes with a brief discussion describing potential areas of future development in this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助JLLi采纳,获得10
2秒前
文静紫霜完成签到 ,获得积分10
3秒前
LIKUN完成签到,获得积分10
4秒前
打打应助打工人采纳,获得10
6秒前
酷波er应助Erislastem采纳,获得10
6秒前
6秒前
LC完成签到 ,获得积分10
7秒前
高大凝海完成签到,获得积分10
11秒前
简单起眸完成签到,获得积分10
12秒前
12秒前
tian发布了新的文献求助10
13秒前
春春发布了新的文献求助10
15秒前
qianmo完成签到 ,获得积分10
15秒前
16秒前
双青豆完成签到 ,获得积分10
16秒前
FashionBoy应助wxyllxx采纳,获得10
20秒前
莉亚发布了新的文献求助50
21秒前
aero完成签到 ,获得积分10
22秒前
欣慰外绣发布了新的文献求助10
22秒前
tian完成签到,获得积分10
23秒前
黄橙子完成签到 ,获得积分10
25秒前
28秒前
28秒前
科研通AI2S应助perdgs采纳,获得10
30秒前
32秒前
凯凯完成签到,获得积分10
35秒前
古风应助wxyllxx采纳,获得10
36秒前
淡出发布了新的文献求助10
36秒前
有人就有恩怨完成签到,获得积分10
36秒前
xcs完成签到,获得积分10
37秒前
彭于晏应助1GE采纳,获得10
38秒前
乐乐应助小章子冰箱采纳,获得10
38秒前
舒适的梦玉完成签到,获得积分10
40秒前
荣铁身应助科研通管家采纳,获得10
41秒前
Zhouzhou应助科研通管家采纳,获得10
41秒前
毛豆应助科研通管家采纳,获得10
41秒前
NexusExplorer应助科研通管家采纳,获得10
41秒前
Zhouzhou应助科研通管家采纳,获得10
41秒前
充电宝应助科研通管家采纳,获得10
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3317555
求助须知:如何正确求助?哪些是违规求助? 2949033
关于积分的说明 8544029
捐赠科研通 2625200
什么是DOI,文献DOI怎么找? 1436632
科研通“疑难数据库(出版商)”最低求助积分说明 665920
邀请新用户注册赠送积分活动 651882