Component network meta‐analysis compared to a matching method in a disconnected network: A case study

观察研究 匹配(统计) 荟萃分析 倾向得分匹配 统计 计算机科学 网络分析 组分(热力学) 数学 计量经济学 医学 量子力学 热力学 物理 内科学
作者
Gerta Rücker,Susanne Schmitz,Guido Schwarzer
出处
期刊:Biometrical Journal [Wiley]
卷期号:63 (2): 447-461 被引量:29
标识
DOI:10.1002/bimj.201900339
摘要

Network meta-analysis is a method to combine evidence from randomized controlled trials (RCTs) that compare a number of different interventions for a given clinical condition. Usually, this requires a connected network. A possible approach to link a disconnected network is to add evidence from nonrandomized comparisons, using propensity score or matching-adjusted indirect comparisons methods. However, nonrandomized comparisons may be associated with an unclear risk of bias. Schmitz et al. used single-arm observational studies for bridging the gap between two disconnected networks of treatments for multiple myeloma. We present a reanalysis of these data using component network meta-analysis (CNMA) models entirely based on RCTs, utilizing the fact that many of the treatments consisted of common treatment components occurring in both networks. We discuss forward and backward strategies for selecting appropriate CNMA models and compare the results to those obtained by Schmitz et al. using their matching method. CNMA models provided a good fit to the data and led to treatment rankings that were similar, though not fully equal to that obtained by Schmitz et al. We conclude that researchers encountering a disconnected network with treatments in different subnets having common components should consider a CNMA model. Such models, exclusively based on evidence from RCTs, are a promising alternative to matching approaches that require additional evidence from observational studies. CNMA models are implemented in the R package netmeta.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李创业发布了新的文献求助10
1秒前
炙热冰夏发布了新的文献求助10
1秒前
autobot1完成签到,获得积分10
1秒前
科研通AI5应助111采纳,获得10
1秒前
烟花应助Wang采纳,获得10
1秒前
曼尼发布了新的文献求助10
1秒前
赘婿应助桑姊采纳,获得10
3秒前
斯文败类应助Lvj采纳,获得10
3秒前
SYLH应助YHL采纳,获得10
3秒前
ranqi完成签到,获得积分10
3秒前
3秒前
4秒前
17808352679发布了新的文献求助10
4秒前
易生完成签到,获得积分10
5秒前
细腻曼冬完成签到 ,获得积分10
5秒前
5秒前
5秒前
9209完成签到 ,获得积分10
5秒前
6秒前
ranqi发布了新的文献求助10
6秒前
云落完成签到,获得积分10
6秒前
田様应助杨枝甘露樱桃采纳,获得10
6秒前
冲浪男孩226完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
现实的曼荷关注了科研通微信公众号
8秒前
8秒前
邓佳鑫Alan应助uniphoton采纳,获得10
8秒前
8秒前
英姑应助cc采纳,获得10
8秒前
MM完成签到,获得积分10
9秒前
lyn发布了新的文献求助10
9秒前
koipp发布了新的文献求助10
9秒前
Rebecca发布了新的文献求助10
10秒前
pinging应助愉快冰淇淋采纳,获得10
10秒前
不厌发布了新的文献求助100
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762