Component network meta‐analysis compared to a matching method in a disconnected network: A case study

观察研究 匹配(统计) 荟萃分析 倾向得分匹配 统计 计算机科学 网络分析 组分(热力学) 数学 计量经济学 医学 量子力学 热力学 物理 内科学
作者
Gerta Rücker,Susanne Schmitz,Guido Schwarzer
出处
期刊:Biometrical Journal [Wiley]
卷期号:63 (2): 447-461 被引量:29
标识
DOI:10.1002/bimj.201900339
摘要

Network meta-analysis is a method to combine evidence from randomized controlled trials (RCTs) that compare a number of different interventions for a given clinical condition. Usually, this requires a connected network. A possible approach to link a disconnected network is to add evidence from nonrandomized comparisons, using propensity score or matching-adjusted indirect comparisons methods. However, nonrandomized comparisons may be associated with an unclear risk of bias. Schmitz et al. used single-arm observational studies for bridging the gap between two disconnected networks of treatments for multiple myeloma. We present a reanalysis of these data using component network meta-analysis (CNMA) models entirely based on RCTs, utilizing the fact that many of the treatments consisted of common treatment components occurring in both networks. We discuss forward and backward strategies for selecting appropriate CNMA models and compare the results to those obtained by Schmitz et al. using their matching method. CNMA models provided a good fit to the data and led to treatment rankings that were similar, though not fully equal to that obtained by Schmitz et al. We conclude that researchers encountering a disconnected network with treatments in different subnets having common components should consider a CNMA model. Such models, exclusively based on evidence from RCTs, are a promising alternative to matching approaches that require additional evidence from observational studies. CNMA models are implemented in the R package netmeta.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
viahit完成签到 ,获得积分10
刚刚
搜集达人应助酷酷妙梦采纳,获得10
1秒前
周同学完成签到,获得积分10
1秒前
1秒前
时尚的秋天完成签到 ,获得积分10
2秒前
大反应釜发布了新的文献求助10
2秒前
2秒前
3秒前
李季铭发布了新的文献求助10
4秒前
4秒前
飘逸的巧凡完成签到,获得积分10
4秒前
4秒前
5秒前
yyyyyqy发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
椰汁汁完成签到 ,获得积分10
5秒前
自由的凛发布了新的文献求助10
6秒前
6秒前
慕青应助咪咪不吃糖采纳,获得10
6秒前
7秒前
希望天下0贩的0应助123456qi采纳,获得10
7秒前
你看起来很好吃完成签到,获得积分10
7秒前
科研发布了新的文献求助30
7秒前
丸子完成签到,获得积分20
7秒前
墨菲完成签到,获得积分10
8秒前
8秒前
8秒前
StH发布了新的文献求助30
8秒前
PengSchnee完成签到,获得积分10
8秒前
8秒前
Feifei133完成签到,获得积分10
9秒前
Jasper应助太清采纳,获得10
9秒前
丝丝发布了新的文献求助10
10秒前
所所应助就爱从黑巧采纳,获得10
10秒前
义气笑容完成签到,获得积分10
11秒前
酷酷妙梦发布了新的文献求助10
11秒前
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151225
求助须知:如何正确求助?哪些是违规求助? 2802672
关于积分的说明 7849833
捐赠科研通 2460115
什么是DOI,文献DOI怎么找? 1309560
科研通“疑难数据库(出版商)”最低求助积分说明 628956
版权声明 601760