Commercializing the Package Flow: Cross-sampling Physical Products Through E-commerce Warehouses

仓库 电子商务 业务 流量(数学) 计算机科学 数据库 营销 万维网 物理 机械
作者
Brian Rongqing Han,Leon Yang Chu,Tianshu Sun,Lixia Wu
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.3566756
摘要

Many e-commerce platforms have established their warehouses to facilitate the storage and delivery of packages. This paper studies a novel business practice---cross-sampling through e-commerce warehouses---that allows physical free samples provided by one (sampling) brand to be distributed with the packages of another unrelated (distributing) brand. In close collaboration with Alibaba, we implement cross-sampling through a large-scale field experiment, in which more than 55,000 free samples are distributed, to empirically examine its effectiveness in driving online sales of the sampling brand. First, we find significant increases in store visits of the sampling brand both in the short term and long term up to 14 months afterward. There is also a significant long-term increase in sales for new customers, suggesting that cross-sampling is effective in acquiring new customers. Second, our results suggest that the effect comes from customers' repeated purchases of the sampled item. Cross-sampling of a particular item leads to a positive spillover to other products within the sampling brand's online store and the indirect channel that also sells products of the sampling brand. The results indicate that cross-sampling promotes the sampling brand through customers' positive experiences with the physical free samples. Finally, we illustrate the potential for personalization for cross-sampling. Cross-sampling is more effective for customers who recently viewed related products, are less price sensitive, or just purchased non-essential products from the distributing brand. By taking into account the interaction among brands, items, and customers, we can further improve the profitability of cross-sampling by targeting the ``right" packages. Overall, as cross-sampling is scalable, effective, and flexible, we demonstrate the high potential of a new business practice that combines offline logistics control and online information to generate additional business value for customers, brands, and the platform.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
完美世界应助sunqian采纳,获得10
1秒前
wangxiaobin完成签到,获得积分10
2秒前
2秒前
爆米花应助茶博士采纳,获得10
3秒前
隋阳完成签到 ,获得积分10
3秒前
孙同学完成签到,获得积分10
4秒前
小小瑶瑶发布了新的文献求助10
5秒前
晚星发布了新的文献求助30
5秒前
雪白元风完成签到 ,获得积分10
6秒前
6秒前
萝卜青菜完成签到 ,获得积分10
8秒前
尹妮妮发布了新的文献求助10
8秒前
9秒前
erbdguj完成签到,获得积分10
9秒前
10秒前
善学以致用应助lindollar采纳,获得10
10秒前
心静听炊烟完成签到 ,获得积分10
10秒前
11秒前
lxk发布了新的文献求助20
11秒前
Criminology34应助培风采纳,获得10
12秒前
小蘑菇应助凡凡采纳,获得10
12秒前
胡一一完成签到,获得积分10
12秒前
科研通AI6应助胡萝卜采纳,获得10
12秒前
13秒前
吴晓娟发布了新的文献求助20
14秒前
茶博士发布了新的文献求助10
14秒前
难过的一一完成签到,获得积分10
14秒前
桃喜芒芒完成签到,获得积分20
14秒前
舒服的曼云完成签到,获得积分10
14秒前
小栗完成签到,获得积分10
15秒前
XT完成签到 ,获得积分10
16秒前
风清扬发布了新的文献求助10
16秒前
乐乐应助黑黑芝麻胡采纳,获得10
16秒前
17秒前
小栗发布了新的文献求助10
19秒前
19秒前
我是老大应助美好斓采纳,获得10
20秒前
sdfdzhang完成签到 ,获得积分0
21秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379208
求助须知:如何正确求助?哪些是违规求助? 4503684
关于积分的说明 14016154
捐赠科研通 4412373
什么是DOI,文献DOI怎么找? 2423776
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394197