Commercializing the Package Flow: Cross-sampling Physical Products Through E-commerce Warehouses

仓库 电子商务 业务 流量(数学) 计算机科学 数据库 营销 万维网 物理 机械
作者
Brian Rongqing Han,Leon Yang Chu,Tianshu Sun,Lixia Wu
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.3566756
摘要

Many e-commerce platforms have established their warehouses to facilitate the storage and delivery of packages. This paper studies a novel business practice---cross-sampling through e-commerce warehouses---that allows physical free samples provided by one (sampling) brand to be distributed with the packages of another unrelated (distributing) brand. In close collaboration with Alibaba, we implement cross-sampling through a large-scale field experiment, in which more than 55,000 free samples are distributed, to empirically examine its effectiveness in driving online sales of the sampling brand. First, we find significant increases in store visits of the sampling brand both in the short term and long term up to 14 months afterward. There is also a significant long-term increase in sales for new customers, suggesting that cross-sampling is effective in acquiring new customers. Second, our results suggest that the effect comes from customers' repeated purchases of the sampled item. Cross-sampling of a particular item leads to a positive spillover to other products within the sampling brand's online store and the indirect channel that also sells products of the sampling brand. The results indicate that cross-sampling promotes the sampling brand through customers' positive experiences with the physical free samples. Finally, we illustrate the potential for personalization for cross-sampling. Cross-sampling is more effective for customers who recently viewed related products, are less price sensitive, or just purchased non-essential products from the distributing brand. By taking into account the interaction among brands, items, and customers, we can further improve the profitability of cross-sampling by targeting the ``right" packages. Overall, as cross-sampling is scalable, effective, and flexible, we demonstrate the high potential of a new business practice that combines offline logistics control and online information to generate additional business value for customers, brands, and the platform.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子发布了新的文献求助30
刚刚
1秒前
WY完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
流浪给付研琪的求助进行了留言
1秒前
1秒前
学渣发布了新的文献求助10
1秒前
俊逸的问薇完成签到 ,获得积分10
2秒前
过时的访天完成签到 ,获得积分10
2秒前
柴郡喵完成签到,获得积分10
3秒前
3秒前
小圆不圆发布了新的文献求助10
3秒前
典雅的灵煌完成签到,获得积分10
3秒前
yyyg完成签到,获得积分10
5秒前
ZZZ完成签到,获得积分10
5秒前
雨雨雨发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
zhubin完成签到 ,获得积分10
7秒前
高高问夏发布了新的文献求助10
7秒前
笑点低蜜蜂完成签到,获得积分10
8秒前
香蕉觅云应助ProfWang采纳,获得10
8秒前
清爽老九发布了新的文献求助10
8秒前
如意发布了新的文献求助10
8秒前
所所应助神勇乐安采纳,获得10
8秒前
9秒前
yyyg发布了新的文献求助10
9秒前
9秒前
小二郎应助时刻保持质疑采纳,获得10
10秒前
i喝凉白开完成签到 ,获得积分10
10秒前
beiyue完成签到,获得积分10
10秒前
丘比特应助keyanrubbish采纳,获得10
10秒前
流浪应助付研琪采纳,获得10
11秒前
害羞鬼完成签到,获得积分10
11秒前
11秒前
韩麒嘉发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836