Commercializing the Package Flow: Cross-sampling Physical Products Through E-commerce Warehouses

仓库 电子商务 业务 流量(数学) 计算机科学 数据库 营销 万维网 物理 机械
作者
Brian Rongqing Han,Leon Yang Chu,Tianshu Sun,Lixia Wu
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.3566756
摘要

Many e-commerce platforms have established their warehouses to facilitate the storage and delivery of packages. This paper studies a novel business practice---cross-sampling through e-commerce warehouses---that allows physical free samples provided by one (sampling) brand to be distributed with the packages of another unrelated (distributing) brand. In close collaboration with Alibaba, we implement cross-sampling through a large-scale field experiment, in which more than 55,000 free samples are distributed, to empirically examine its effectiveness in driving online sales of the sampling brand. First, we find significant increases in store visits of the sampling brand both in the short term and long term up to 14 months afterward. There is also a significant long-term increase in sales for new customers, suggesting that cross-sampling is effective in acquiring new customers. Second, our results suggest that the effect comes from customers' repeated purchases of the sampled item. Cross-sampling of a particular item leads to a positive spillover to other products within the sampling brand's online store and the indirect channel that also sells products of the sampling brand. The results indicate that cross-sampling promotes the sampling brand through customers' positive experiences with the physical free samples. Finally, we illustrate the potential for personalization for cross-sampling. Cross-sampling is more effective for customers who recently viewed related products, are less price sensitive, or just purchased non-essential products from the distributing brand. By taking into account the interaction among brands, items, and customers, we can further improve the profitability of cross-sampling by targeting the ``right" packages. Overall, as cross-sampling is scalable, effective, and flexible, we demonstrate the high potential of a new business practice that combines offline logistics control and online information to generate additional business value for customers, brands, and the platform.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香香完成签到 ,获得积分20
刚刚
李晓彤发布了新的文献求助10
刚刚
烂漫的书蕾完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
wuran发布了新的文献求助10
2秒前
花灯王子发布了新的文献求助30
2秒前
思源应助千里采纳,获得10
2秒前
2秒前
伽娜发布了新的文献求助10
3秒前
3秒前
So完成签到,获得积分10
3秒前
叶女士完成签到,获得积分10
3秒前
ziyue发布了新的文献求助30
3秒前
观察者完成签到,获得积分10
4秒前
CasterL完成签到,获得积分10
4秒前
阔达忆秋完成签到 ,获得积分10
4秒前
一平发布了新的文献求助10
4秒前
wuqs完成签到,获得积分10
4秒前
顾瑶发布了新的文献求助10
4秒前
麒ww完成签到 ,获得积分10
4秒前
nayuta发布了新的文献求助20
4秒前
4秒前
晨曦刘发布了新的文献求助10
5秒前
Owen应助薯片采纳,获得10
5秒前
5秒前
可乐加冰完成签到 ,获得积分10
5秒前
852应助弥弥采纳,获得10
5秒前
Jiaqing完成签到 ,获得积分10
5秒前
康康完成签到,获得积分10
6秒前
小阿发完成签到,获得积分10
6秒前
科研通AI6应助SSmiao采纳,获得30
7秒前
菜菜发布了新的文献求助10
7秒前
Josie完成签到 ,获得积分10
7秒前
7秒前
顾文发布了新的文献求助10
7秒前
yyy完成签到,获得积分10
8秒前
NexusExplorer应助伽娜采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285