电化学
三氧化钼
镁
电极
钼
无机化学
材料科学
辅助电极
化学
化学工程
物理化学
冶金
电解质
工程类
作者
Marta Cabello,Alejandro Medina,Ricardo Alcántara,Francisco Nacimiento,C. Vicente,José L. Tirado
标识
DOI:10.1016/j.jallcom.2020.154795
摘要
The hexagonal polytype of molybdenum trioxide (h-MoO3) was prepared through the hydrothermal method. The anisotropic growth of the particles yields to micro rods with prismatic geometry. Theoretical calculations were carried out to simulate the insertion of magnesium in the framework of h-MoO3. The electrochemical behavior of single-phase h-MoO3 in non-aqueous magnesium cells was studied, and for that purpose, Mg metal or activated carbon (A.C.) was used as a counter electrode. This is the first report about the insertion of a divalent cation into h-MoO3. The experimental capacity vs. Mg is only around 20–50 mAh g−1. Nevertheless, whether Mg metal is replaced by A.C. as the counter electrode, the electrochemical behavior of h-MoO3 is improved, and the reversible capacity is about 100 mAh g−1 after 130 cycles. The combination of h-MoO3 and A.C. forms a hybrid or asymmetric electrochemical capacitor. The mechanism of the reaction in the working electrode is more complex than a Mg2+-insertion. Anion (TFSI−) adsorption and redox of oxygen ions in the lattice of h-MoO3 also contribute to the reversible capacity. Consequently, h-MoO3 is a dual-ion electrode material. For higher mass ratio A.C./h-MoO3, the experimental maximum reversible capacity is up to 350 mAh g−1 (equivalent to nominal composition Mg0.94MoO3).
科研通智能强力驱动
Strongly Powered by AbleSci AI