Data-driven development of liquid chromatography-mass spectrometry methods for combined sample matrices

化学 分析物 色谱法 样品制备 色谱分离 根(腹足类) 质谱法 高效液相色谱法 植物 生物
作者
Zhiwei Ge,Kuanyong Zhang,David D. Y. Chen,Binjun Yan
出处
期刊:Talanta [Elsevier BV]
卷期号:224: 121880-121880 被引量:1
标识
DOI:10.1016/j.talanta.2020.121880
摘要

Herbal medicine formulas (HMFs), the combinations of two or more herbal medicine (HM) ingredients required in a single prescription, are a typical kind of combined sample matrices. LC-MS is a powerful platform for the analyses of such complex samples. The optimization of separation conditions may require a lot of experiments, because multiple analytes need to be separated from a plethora of possible interfering compounds in the sample mixture containing different herbal medicines. To greatly reduce the complexity needed for the optimization of separation conditions, this work proposes a data-driven approach for the systematic development of LC-MS methods for HMFs, using six HMFs created from four HMs (Atractylodis Macrocephalae Rhizoma, Paeoniae Radix Alba, Corydalis Rhizoma and Ophiopogonis Radix) as case-studies. In this approach, the chromatographic peak parameters (like retention times) of the analytes and interfering compounds under different separation conditions were extracted from the LC-MS database of the HMs. Then data-driven models between the chromatographic peak parameters and the separation parameters were built with machine learning methods (r > 0.996 for all the compounds) and used to predict the chromatographic peaks of the analytes and interfering compounds in HMF analyses. Based on the predictions, all of the separation parameters were optimized without any previous experiments on the HMFs. In the validation experiments for the six HMFs, all of the analytes were well separated. The data-driven approach demonstrated enables systematic and rapid development of LC-MS methods for HMFs, and the separation conditions can be efficiently adjusted for different analytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HAG关闭了HAG文献求助
刚刚
3秒前
4秒前
4秒前
5秒前
7秒前
彭于晏应助顺心的皓轩采纳,获得10
9秒前
9秒前
chiva发布了新的文献求助10
9秒前
10秒前
jin发布了新的文献求助10
10秒前
10秒前
conanking完成签到 ,获得积分10
11秒前
zhangyu应助LWJ采纳,获得10
11秒前
11秒前
11秒前
12秒前
13秒前
13秒前
Yimmy发布了新的文献求助10
15秒前
15秒前
拍脑门搞科研完成签到,获得积分10
15秒前
16秒前
17秒前
李滢童发布了新的文献求助10
17秒前
hubanj完成签到,获得积分10
19秒前
小马甲应助jin采纳,获得10
20秒前
小王发布了新的文献求助20
20秒前
乐乐应助醉熏的鑫采纳,获得10
21秒前
无限道罡发布了新的文献求助10
22秒前
Yimmy完成签到,获得积分10
22秒前
哈哈镜阿姐完成签到,获得积分10
23秒前
24秒前
小马甲应助李滢童采纳,获得10
25秒前
香蕉觅云应助泡泡糖采纳,获得10
27秒前
充电宝应助王青青采纳,获得10
27秒前
tcf应助无限道罡采纳,获得20
28秒前
garlic完成签到,获得积分10
29秒前
彭于晏应助沉默的觅海采纳,获得10
29秒前
华仔应助科研通管家采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533801
关于积分的说明 11263775
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806113
邀请新用户注册赠送积分活动 882955
科研通“疑难数据库(出版商)”最低求助积分说明 809629