已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SuperPCA: A Superpixelwise PCA Approach for Unsupervised Feature Extraction of Hyperspectral Imagery

模式识别(心理学) 降维 高光谱成像 人工智能 主成分分析 计算机科学 判别式 特征提取 预处理器 分割
作者
Junjun Jiang,Jiayi Ma,Chen Chen,Zhongyuan Wang,Zhihua Cai,Lizhe Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:56 (8): 4581-4593 被引量:71
标识
DOI:10.1109/tgrs.2018.2828029
摘要

As an unsupervised dimensionality reduction method, principal component analysis (PCA) has been widely considered as an efficient and effective preprocessing step for hyperspectral image (HSI) processing and analysis tasks. It takes each band as a whole and globally extracts the most representative bands. However, different homogeneous regions correspond to different objects, whose spectral features are diverse. It is obviously inappropriate to carry out dimensionality reduction through a unified projection for an entire HSI. In this paper, a simple but very effective superpixelwise PCA approach, called SuperPCA, is proposed to learn the intrinsic low-dimensional features of HSIs. In contrast to classical PCA models, SuperPCA has four main properties. (1) Unlike the traditional PCA method based on a whole image, SuperPCA takes into account the diversity in different homogeneous regions, that is, different regions should have different projections. (2) Most of the conventional feature extraction models cannot directly use the spatial information of HSIs, while SuperPCA is able to incorporate the spatial context information into the unsupervised dimensionality reduction by superpixel segmentation. (3) Since the regions obtained by superpixel segmentation have homogeneity, SuperPCA can extract potential low-dimensional features even under noise. (4) Although SuperPCA is an unsupervised method, it can achieve competitive performance when compared with supervised approaches. The resulting features are discriminative, compact, and noise resistant, leading to improved HSI classification performance. Experiments on three public datasets demonstrate that the SuperPCA model significantly outperforms the conventional PCA based dimensionality reduction baselines for HSI classification. The Matlab source code is available at https://github.com/junjun-jiang/SuperPCA

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助青原采纳,获得10
刚刚
3秒前
3秒前
3秒前
5秒前
蒋莹萱完成签到 ,获得积分10
5秒前
SiO2完成签到 ,获得积分0
6秒前
6秒前
包尚易发布了新的文献求助30
7秒前
lonny完成签到,获得积分20
7秒前
Zyy发布了新的文献求助20
7秒前
隐形曼青应助杜若采纳,获得10
8秒前
9秒前
TIANCAI发布了新的文献求助10
9秒前
英吉利25发布了新的文献求助10
11秒前
12秒前
成就乐珍发布了新的文献求助10
13秒前
ccm应助听话的寒天采纳,获得10
14秒前
可爱的函函应助优雅的猪采纳,获得10
14秒前
lrelia02发布了新的文献求助10
14秒前
汉堡包应助科研通管家采纳,获得30
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
gstaihn完成签到,获得积分10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得30
15秒前
zjcbk985发布了新的文献求助10
15秒前
15秒前
ceeray23发布了新的文献求助20
15秒前
15秒前
Yangtze完成签到 ,获得积分10
16秒前
hyz124完成签到,获得积分10
17秒前
hfd完成签到,获得积分10
18秒前
jzm完成签到,获得积分10
19秒前
lll发布了新的文献求助10
20秒前
zjcbk985完成签到,获得积分10
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515229
求助须知:如何正确求助?哪些是违规求助? 4608772
关于积分的说明 14513081
捐赠科研通 4545068
什么是DOI,文献DOI怎么找? 2490383
邀请新用户注册赠送积分活动 1472349
关于科研通互助平台的介绍 1444058