亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SuperPCA: A Superpixelwise PCA Approach for Unsupervised Feature Extraction of Hyperspectral Imagery

模式识别(心理学) 降维 高光谱成像 人工智能 主成分分析 计算机科学 判别式 特征提取 预处理器 分割
作者
Junjun Jiang,Jiayi Ma,Chen Chen,Zhongyuan Wang,Zhihua Cai,Lizhe Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:56 (8): 4581-4593 被引量:71
标识
DOI:10.1109/tgrs.2018.2828029
摘要

As an unsupervised dimensionality reduction method, principal component analysis (PCA) has been widely considered as an efficient and effective preprocessing step for hyperspectral image (HSI) processing and analysis tasks. It takes each band as a whole and globally extracts the most representative bands. However, different homogeneous regions correspond to different objects, whose spectral features are diverse. It is obviously inappropriate to carry out dimensionality reduction through a unified projection for an entire HSI. In this paper, a simple but very effective superpixelwise PCA approach, called SuperPCA, is proposed to learn the intrinsic low-dimensional features of HSIs. In contrast to classical PCA models, SuperPCA has four main properties. (1) Unlike the traditional PCA method based on a whole image, SuperPCA takes into account the diversity in different homogeneous regions, that is, different regions should have different projections. (2) Most of the conventional feature extraction models cannot directly use the spatial information of HSIs, while SuperPCA is able to incorporate the spatial context information into the unsupervised dimensionality reduction by superpixel segmentation. (3) Since the regions obtained by superpixel segmentation have homogeneity, SuperPCA can extract potential low-dimensional features even under noise. (4) Although SuperPCA is an unsupervised method, it can achieve competitive performance when compared with supervised approaches. The resulting features are discriminative, compact, and noise resistant, leading to improved HSI classification performance. Experiments on three public datasets demonstrate that the SuperPCA model significantly outperforms the conventional PCA based dimensionality reduction baselines for HSI classification. The Matlab source code is available at https://github.com/junjun-jiang/SuperPCA

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
kk发布了新的文献求助10
6秒前
林强完成签到,获得积分10
6秒前
Liuxiaoliu完成签到 ,获得积分10
13秒前
16秒前
22秒前
swan完成签到 ,获得积分10
22秒前
xuyan发布了新的文献求助30
23秒前
26秒前
27秒前
五博发布了新的文献求助10
27秒前
kk完成签到,获得积分10
29秒前
TangSEU发布了新的文献求助10
30秒前
xiaohan,JIA完成签到,获得积分10
32秒前
苗龙伟完成签到 ,获得积分10
35秒前
36秒前
36秒前
37秒前
爆米花应助TangSEU采纳,获得10
39秒前
chen发布了新的文献求助10
40秒前
40秒前
liruixin发布了新的文献求助10
41秒前
氯雷他定发布了新的文献求助10
43秒前
49秒前
氯雷他定完成签到,获得积分10
50秒前
52秒前
56秒前
HL773发布了新的文献求助10
59秒前
Hello应助沐阳采纳,获得10
59秒前
C_Cppp完成签到 ,获得积分10
1分钟前
沐阳完成签到,获得积分10
1分钟前
伊力扎提发布了新的文献求助10
1分钟前
mmyhn发布了新的文献求助10
1分钟前
1分钟前
1分钟前
就123发布了新的文献求助10
1分钟前
英俊的铭应助豆豆眼采纳,获得10
1分钟前
llll完成签到,获得积分10
1分钟前
sss完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723397
求助须知:如何正确求助?哪些是违规求助? 5276618
关于积分的说明 15298565
捐赠科研通 4871890
什么是DOI,文献DOI怎么找? 2616321
邀请新用户注册赠送积分活动 1566167
关于科研通互助平台的介绍 1523041