SuperPCA: A Superpixelwise PCA Approach for Unsupervised Feature Extraction of Hyperspectral Imagery

模式识别(心理学) 降维 高光谱成像 人工智能 主成分分析 计算机科学 判别式 特征提取 预处理器 分割
作者
Junjun Jiang,Jiayi Ma,Chen Chen,Zhongyuan Wang,Zhihua Cai,Lizhe Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:56 (8): 4581-4593 被引量:71
标识
DOI:10.1109/tgrs.2018.2828029
摘要

As an unsupervised dimensionality reduction method, principal component analysis (PCA) has been widely considered as an efficient and effective preprocessing step for hyperspectral image (HSI) processing and analysis tasks. It takes each band as a whole and globally extracts the most representative bands. However, different homogeneous regions correspond to different objects, whose spectral features are diverse. It is obviously inappropriate to carry out dimensionality reduction through a unified projection for an entire HSI. In this paper, a simple but very effective superpixelwise PCA approach, called SuperPCA, is proposed to learn the intrinsic low-dimensional features of HSIs. In contrast to classical PCA models, SuperPCA has four main properties. (1) Unlike the traditional PCA method based on a whole image, SuperPCA takes into account the diversity in different homogeneous regions, that is, different regions should have different projections. (2) Most of the conventional feature extraction models cannot directly use the spatial information of HSIs, while SuperPCA is able to incorporate the spatial context information into the unsupervised dimensionality reduction by superpixel segmentation. (3) Since the regions obtained by superpixel segmentation have homogeneity, SuperPCA can extract potential low-dimensional features even under noise. (4) Although SuperPCA is an unsupervised method, it can achieve competitive performance when compared with supervised approaches. The resulting features are discriminative, compact, and noise resistant, leading to improved HSI classification performance. Experiments on three public datasets demonstrate that the SuperPCA model significantly outperforms the conventional PCA based dimensionality reduction baselines for HSI classification. The Matlab source code is available at https://github.com/junjun-jiang/SuperPCA

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雪白煜城发布了新的文献求助20
2秒前
2秒前
夜神月发布了新的文献求助10
2秒前
yhs2121完成签到 ,获得积分10
2秒前
2秒前
苏酒完成签到,获得积分10
2秒前
ljy发布了新的文献求助80
3秒前
xhm发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
迅猛2002完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
积极问晴完成签到,获得积分10
8秒前
饭胖胖完成签到,获得积分10
8秒前
8秒前
夕荀发布了新的文献求助10
8秒前
kiki发布了新的文献求助10
8秒前
yhs2121发布了新的文献求助10
9秒前
不爱科研完成签到,获得积分20
9秒前
乐乐应助AAA建材王哥采纳,获得10
9秒前
小科发布了新的文献求助10
9秒前
Apple发布了新的文献求助10
9秒前
9秒前
张力航发布了新的文献求助10
9秒前
CodeCraft应助wyx采纳,获得10
10秒前
自由丹雪给自由丹雪的求助进行了留言
10秒前
无印秀秀发布了新的文献求助10
11秒前
zzzz发布了新的文献求助30
12秒前
genomed应助只想梳油头采纳,获得10
12秒前
喜悦一德完成签到,获得积分10
13秒前
大个应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627069
求助须知:如何正确求助?哪些是违规求助? 4712976
关于积分的说明 14961029
捐赠科研通 4783415
什么是DOI,文献DOI怎么找? 2554637
邀请新用户注册赠送积分活动 1516274
关于科研通互助平台的介绍 1476543