SuperPCA: A Superpixelwise PCA Approach for Unsupervised Feature Extraction of Hyperspectral Imagery

模式识别(心理学) 降维 高光谱成像 人工智能 主成分分析 计算机科学 判别式 特征提取 预处理器 分割
作者
Junjun Jiang,Jiayi Ma,Chen Chen,Zhongyuan Wang,Zhihua Cai,Lizhe Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:56 (8): 4581-4593 被引量:71
标识
DOI:10.1109/tgrs.2018.2828029
摘要

As an unsupervised dimensionality reduction method, principal component analysis (PCA) has been widely considered as an efficient and effective preprocessing step for hyperspectral image (HSI) processing and analysis tasks. It takes each band as a whole and globally extracts the most representative bands. However, different homogeneous regions correspond to different objects, whose spectral features are diverse. It is obviously inappropriate to carry out dimensionality reduction through a unified projection for an entire HSI. In this paper, a simple but very effective superpixelwise PCA approach, called SuperPCA, is proposed to learn the intrinsic low-dimensional features of HSIs. In contrast to classical PCA models, SuperPCA has four main properties. (1) Unlike the traditional PCA method based on a whole image, SuperPCA takes into account the diversity in different homogeneous regions, that is, different regions should have different projections. (2) Most of the conventional feature extraction models cannot directly use the spatial information of HSIs, while SuperPCA is able to incorporate the spatial context information into the unsupervised dimensionality reduction by superpixel segmentation. (3) Since the regions obtained by superpixel segmentation have homogeneity, SuperPCA can extract potential low-dimensional features even under noise. (4) Although SuperPCA is an unsupervised method, it can achieve competitive performance when compared with supervised approaches. The resulting features are discriminative, compact, and noise resistant, leading to improved HSI classification performance. Experiments on three public datasets demonstrate that the SuperPCA model significantly outperforms the conventional PCA based dimensionality reduction baselines for HSI classification. The Matlab source code is available at https://github.com/junjun-jiang/SuperPCA
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助小宋爱睡觉采纳,获得10
刚刚
FashionBoy应助像风一样啊采纳,获得10
2秒前
Rothchile发布了新的文献求助10
2秒前
桐桐应助DE2022采纳,获得10
3秒前
xbdb发布了新的文献求助10
4秒前
mori完成签到,获得积分10
5秒前
6秒前
7秒前
9秒前
桃桃桃完成签到,获得积分10
9秒前
12秒前
斯文败类应助lee采纳,获得10
12秒前
白桃发布了新的文献求助10
12秒前
winnie发布了新的文献求助10
13秒前
13秒前
creek发布了新的文献求助10
15秒前
gyhk完成签到,获得积分10
15秒前
15秒前
大模型应助htp采纳,获得10
18秒前
18秒前
19秒前
华仔应助sseeaaa采纳,获得10
19秒前
科研通AI5应助周晏平采纳,获得10
19秒前
20秒前
FashionBoy应助羊木采纳,获得10
21秒前
你是我的唯一完成签到 ,获得积分10
21秒前
星辰大海应助Yvonne采纳,获得10
23秒前
23秒前
sunburst发布了新的文献求助10
24秒前
DE2022发布了新的文献求助10
24秒前
慕青应助豪士赋采纳,获得10
27秒前
27秒前
28秒前
29秒前
29秒前
gliterr发布了新的文献求助10
29秒前
宝小静发布了新的文献求助10
30秒前
32秒前
sunburst完成签到,获得积分10
33秒前
大模型应助小奇采纳,获得10
33秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712195
求助须知:如何正确求助?哪些是违规求助? 3260364
关于积分的说明 9913779
捐赠科研通 2973716
什么是DOI,文献DOI怎么找? 1630764
邀请新用户注册赠送积分活动 773579
科研通“疑难数据库(出版商)”最低求助积分说明 744348