SuperPCA: A Superpixelwise PCA Approach for Unsupervised Feature Extraction of Hyperspectral Imagery

模式识别(心理学) 降维 高光谱成像 人工智能 主成分分析 计算机科学 判别式 特征提取 预处理器 分割
作者
Junjun Jiang,Jiayi Ma,Chen Chen,Zhongyuan Wang,Zhihua Cai,Lizhe Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:56 (8): 4581-4593 被引量:71
标识
DOI:10.1109/tgrs.2018.2828029
摘要

As an unsupervised dimensionality reduction method, principal component analysis (PCA) has been widely considered as an efficient and effective preprocessing step for hyperspectral image (HSI) processing and analysis tasks. It takes each band as a whole and globally extracts the most representative bands. However, different homogeneous regions correspond to different objects, whose spectral features are diverse. It is obviously inappropriate to carry out dimensionality reduction through a unified projection for an entire HSI. In this paper, a simple but very effective superpixelwise PCA approach, called SuperPCA, is proposed to learn the intrinsic low-dimensional features of HSIs. In contrast to classical PCA models, SuperPCA has four main properties. (1) Unlike the traditional PCA method based on a whole image, SuperPCA takes into account the diversity in different homogeneous regions, that is, different regions should have different projections. (2) Most of the conventional feature extraction models cannot directly use the spatial information of HSIs, while SuperPCA is able to incorporate the spatial context information into the unsupervised dimensionality reduction by superpixel segmentation. (3) Since the regions obtained by superpixel segmentation have homogeneity, SuperPCA can extract potential low-dimensional features even under noise. (4) Although SuperPCA is an unsupervised method, it can achieve competitive performance when compared with supervised approaches. The resulting features are discriminative, compact, and noise resistant, leading to improved HSI classification performance. Experiments on three public datasets demonstrate that the SuperPCA model significantly outperforms the conventional PCA based dimensionality reduction baselines for HSI classification. The Matlab source code is available at https://github.com/junjun-jiang/SuperPCA

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
立军发布了新的文献求助200
刚刚
李健应助Yuciyy采纳,获得10
1秒前
2秒前
Owen应助健壮问兰采纳,获得10
3秒前
3秒前
4秒前
潇洒闭月发布了新的文献求助10
4秒前
5秒前
cslghe发布了新的文献求助10
5秒前
5秒前
希望天下0贩的0应助彬子采纳,获得10
5秒前
7秒前
别看了发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助30
7秒前
7秒前
8秒前
嘻嘻发布了新的文献求助10
8秒前
9秒前
墨羽完成签到,获得积分10
9秒前
星辰大海应助猪猪hero采纳,获得10
9秒前
9秒前
ZZ发布了新的文献求助10
10秒前
aulinwl发布了新的文献求助30
10秒前
bkagyin应助lo采纳,获得10
11秒前
侧耳倾听发布了新的文献求助10
12秒前
易安发布了新的文献求助10
12秒前
xiao完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
爆米花应助哇哦呀采纳,获得10
13秒前
英俊的铭应助andrele采纳,获得50
13秒前
14秒前
李爱国应助XSWAN采纳,获得10
14秒前
zhaoa发布了新的文献求助10
14秒前
漾漾发布了新的文献求助10
14秒前
上官若男应助农艳宁采纳,获得10
14秒前
15秒前
lllliu发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762020
求助须知:如何正确求助?哪些是违规求助? 5533545
关于积分的说明 15401764
捐赠科研通 4898295
什么是DOI,文献DOI怎么找? 2634801
邀请新用户注册赠送积分活动 1582925
关于科研通互助平台的介绍 1538165