SuperPCA: A Superpixelwise PCA Approach for Unsupervised Feature Extraction of Hyperspectral Imagery

模式识别(心理学) 降维 高光谱成像 人工智能 主成分分析 计算机科学 判别式 特征提取 预处理器 分割
作者
Junjun Jiang,Jiayi Ma,Chen Chen,Zhongyuan Wang,Zhihua Cai,Lizhe Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:56 (8): 4581-4593 被引量:71
标识
DOI:10.1109/tgrs.2018.2828029
摘要

As an unsupervised dimensionality reduction method, principal component analysis (PCA) has been widely considered as an efficient and effective preprocessing step for hyperspectral image (HSI) processing and analysis tasks. It takes each band as a whole and globally extracts the most representative bands. However, different homogeneous regions correspond to different objects, whose spectral features are diverse. It is obviously inappropriate to carry out dimensionality reduction through a unified projection for an entire HSI. In this paper, a simple but very effective superpixelwise PCA approach, called SuperPCA, is proposed to learn the intrinsic low-dimensional features of HSIs. In contrast to classical PCA models, SuperPCA has four main properties. (1) Unlike the traditional PCA method based on a whole image, SuperPCA takes into account the diversity in different homogeneous regions, that is, different regions should have different projections. (2) Most of the conventional feature extraction models cannot directly use the spatial information of HSIs, while SuperPCA is able to incorporate the spatial context information into the unsupervised dimensionality reduction by superpixel segmentation. (3) Since the regions obtained by superpixel segmentation have homogeneity, SuperPCA can extract potential low-dimensional features even under noise. (4) Although SuperPCA is an unsupervised method, it can achieve competitive performance when compared with supervised approaches. The resulting features are discriminative, compact, and noise resistant, leading to improved HSI classification performance. Experiments on three public datasets demonstrate that the SuperPCA model significantly outperforms the conventional PCA based dimensionality reduction baselines for HSI classification. The Matlab source code is available at https://github.com/junjun-jiang/SuperPCA
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
呆萌的世德完成签到,获得积分10
1秒前
甜甜的豆芽完成签到 ,获得积分10
2秒前
寒江孤影完成签到,获得积分10
2秒前
SciGPT应助有机分子笼采纳,获得10
2秒前
zhu完成签到 ,获得积分10
3秒前
你猜发布了新的文献求助10
3秒前
3秒前
陈曦发布了新的文献求助10
4秒前
4秒前
11完成签到 ,获得积分10
4秒前
开心超人完成签到,获得积分10
4秒前
无花果应助杨杨爱科研采纳,获得10
5秒前
清茶旧友完成签到,获得积分10
5秒前
5秒前
紫色de泡沫完成签到,获得积分10
5秒前
孙福禄应助wfunny采纳,获得10
6秒前
时闲应助z掌握一下采纳,获得10
6秒前
wocala完成签到,获得积分10
7秒前
koko完成签到,获得积分10
7秒前
吕奎完成签到,获得积分10
7秒前
8秒前
fzzzzlucy应助T拐拐采纳,获得10
8秒前
伏城完成签到 ,获得积分10
8秒前
SYLH应助leodu采纳,获得10
8秒前
懂事梨完成签到,获得积分20
8秒前
17self完成签到,获得积分10
9秒前
上官若男应助mm采纳,获得10
9秒前
9秒前
书虫发布了新的文献求助10
11秒前
11秒前
阉太狼完成签到,获得积分10
12秒前
Gdhdjxbbx完成签到,获得积分10
12秒前
小蘑菇应助CHBW采纳,获得10
12秒前
爆米花应助hhm采纳,获得10
12秒前
13秒前
kk完成签到,获得积分10
13秒前
14秒前
熊大完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650