已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SuperPCA: A Superpixelwise PCA Approach for Unsupervised Feature Extraction of Hyperspectral Imagery

模式识别(心理学) 降维 高光谱成像 人工智能 主成分分析 计算机科学 判别式 特征提取 预处理器 分割
作者
Junjun Jiang,Jiayi Ma,Chen Chen,Zhongyuan Wang,Zhihua Cai,Lizhe Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:56 (8): 4581-4593 被引量:71
标识
DOI:10.1109/tgrs.2018.2828029
摘要

As an unsupervised dimensionality reduction method, principal component analysis (PCA) has been widely considered as an efficient and effective preprocessing step for hyperspectral image (HSI) processing and analysis tasks. It takes each band as a whole and globally extracts the most representative bands. However, different homogeneous regions correspond to different objects, whose spectral features are diverse. It is obviously inappropriate to carry out dimensionality reduction through a unified projection for an entire HSI. In this paper, a simple but very effective superpixelwise PCA approach, called SuperPCA, is proposed to learn the intrinsic low-dimensional features of HSIs. In contrast to classical PCA models, SuperPCA has four main properties. (1) Unlike the traditional PCA method based on a whole image, SuperPCA takes into account the diversity in different homogeneous regions, that is, different regions should have different projections. (2) Most of the conventional feature extraction models cannot directly use the spatial information of HSIs, while SuperPCA is able to incorporate the spatial context information into the unsupervised dimensionality reduction by superpixel segmentation. (3) Since the regions obtained by superpixel segmentation have homogeneity, SuperPCA can extract potential low-dimensional features even under noise. (4) Although SuperPCA is an unsupervised method, it can achieve competitive performance when compared with supervised approaches. The resulting features are discriminative, compact, and noise resistant, leading to improved HSI classification performance. Experiments on three public datasets demonstrate that the SuperPCA model significantly outperforms the conventional PCA based dimensionality reduction baselines for HSI classification. The Matlab source code is available at https://github.com/junjun-jiang/SuperPCA
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
由怜雪发布了新的文献求助10
刚刚
千纸鹤完成签到 ,获得积分10
1秒前
Charon完成签到,获得积分10
3秒前
观自在完成签到,获得积分10
9秒前
9秒前
微笑的铸海完成签到 ,获得积分10
9秒前
阿菜完成签到,获得积分10
11秒前
tracey完成签到 ,获得积分10
13秒前
Artin完成签到,获得积分10
13秒前
搜集达人应助嘎嘎的鸡神采纳,获得10
14秒前
王某人完成签到 ,获得积分10
15秒前
寻道图强应助Ji采纳,获得30
18秒前
kento完成签到,获得积分0
21秒前
由怜雪完成签到,获得积分10
25秒前
25秒前
边曦完成签到 ,获得积分10
26秒前
爱学习完成签到,获得积分10
27秒前
18-Crown-6完成签到 ,获得积分10
30秒前
32秒前
39秒前
脑洞疼应助lvsehx采纳,获得10
43秒前
Sirene发布了新的文献求助10
45秒前
45秒前
46秒前
46秒前
Dr-张显华完成签到,获得积分10
47秒前
Dr-张显华发布了新的文献求助10
50秒前
外向思松发布了新的文献求助30
50秒前
yyy完成签到 ,获得积分10
50秒前
修水县1个科研人完成签到 ,获得积分10
51秒前
善良安南发布了新的文献求助10
51秒前
Sirene完成签到,获得积分20
52秒前
55秒前
55秒前
57秒前
lvsehx发布了新的文献求助10
1分钟前
1分钟前
1分钟前
刘隶发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171412
求助须知:如何正确求助?哪些是违规求助? 2822368
关于积分的说明 7938871
捐赠科研通 2482850
什么是DOI,文献DOI怎么找? 1322830
科研通“疑难数据库(出版商)”最低求助积分说明 633742
版权声明 602627