亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SuperPCA: A Superpixelwise PCA Approach for Unsupervised Feature Extraction of Hyperspectral Imagery

模式识别(心理学) 降维 高光谱成像 人工智能 主成分分析 计算机科学 判别式 特征提取 预处理器 分割
作者
Junjun Jiang,Jiayi Ma,Chen Chen,Zhongyuan Wang,Zhihua Cai,Lizhe Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:56 (8): 4581-4593 被引量:71
标识
DOI:10.1109/tgrs.2018.2828029
摘要

As an unsupervised dimensionality reduction method, principal component analysis (PCA) has been widely considered as an efficient and effective preprocessing step for hyperspectral image (HSI) processing and analysis tasks. It takes each band as a whole and globally extracts the most representative bands. However, different homogeneous regions correspond to different objects, whose spectral features are diverse. It is obviously inappropriate to carry out dimensionality reduction through a unified projection for an entire HSI. In this paper, a simple but very effective superpixelwise PCA approach, called SuperPCA, is proposed to learn the intrinsic low-dimensional features of HSIs. In contrast to classical PCA models, SuperPCA has four main properties. (1) Unlike the traditional PCA method based on a whole image, SuperPCA takes into account the diversity in different homogeneous regions, that is, different regions should have different projections. (2) Most of the conventional feature extraction models cannot directly use the spatial information of HSIs, while SuperPCA is able to incorporate the spatial context information into the unsupervised dimensionality reduction by superpixel segmentation. (3) Since the regions obtained by superpixel segmentation have homogeneity, SuperPCA can extract potential low-dimensional features even under noise. (4) Although SuperPCA is an unsupervised method, it can achieve competitive performance when compared with supervised approaches. The resulting features are discriminative, compact, and noise resistant, leading to improved HSI classification performance. Experiments on three public datasets demonstrate that the SuperPCA model significantly outperforms the conventional PCA based dimensionality reduction baselines for HSI classification. The Matlab source code is available at https://github.com/junjun-jiang/SuperPCA

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小粒橙完成签到 ,获得积分10
4秒前
猫抓板完成签到,获得积分10
21秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
万能图书馆应助猫抓板采纳,获得10
2分钟前
2分钟前
猫抓板发布了新的文献求助10
2分钟前
路人应助Magali采纳,获得200
2分钟前
小蘑菇应助猫抓板采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
大园完成签到 ,获得积分10
2分钟前
2分钟前
领导范儿应助Magali采纳,获得150
3分钟前
猫抓板发布了新的文献求助10
3分钟前
昭昭完成签到,获得积分10
3分钟前
3分钟前
Magali发布了新的文献求助150
3分钟前
3分钟前
昭昭发布了新的文献求助10
3分钟前
3分钟前
3分钟前
爆米花应助昭昭采纳,获得10
3分钟前
猫抓板发布了新的文献求助10
3分钟前
共享精神应助猫抓板采纳,获得10
3分钟前
3分钟前
猫抓板发布了新的文献求助10
4分钟前
Qing完成签到 ,获得积分10
4分钟前
JamesPei应助猫抓板采纳,获得10
4分钟前
AixLeft完成签到 ,获得积分10
4分钟前
4分钟前
猫抓板发布了新的文献求助10
4分钟前
把饭拼好给你完成签到 ,获得积分10
5分钟前
善学以致用应助猫抓板采纳,获得10
5分钟前
5分钟前
许晴完成签到,获得积分10
5分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671228
求助须知:如何正确求助?哪些是违规求助? 4912699
关于积分的说明 15134266
捐赠科研通 4830020
什么是DOI,文献DOI怎么找? 2586614
邀请新用户注册赠送积分活动 1540279
关于科研通互助平台的介绍 1498455