A ZnS/CaZnOS Heterojunction for Efficient Mechanical‐to‐Optical Energy Conversion by Conduction Band Offset

机械容积 材料科学 异质结 光电子学 发光 能量转换 机械能 兴奋剂 密度泛函理论 激发 带隙 带偏移量 纳米技术 价带 电气工程 计算化学 化学 功率(物理) 工程类 物理 热力学 量子力学
作者
Dengfeng Peng,Yue Jiang,Bolong Huang,Yangyang Du,Jianxiong Zhao,Xin Zhang,Ronghua Ma,Sergii Golovynskyi,Bing Chen,Feng Wang
出处
期刊:Advanced Materials [Wiley]
卷期号:32 (16) 被引量:163
标识
DOI:10.1002/adma.201907747
摘要

Actively collecting the mechanical energy by efficient conversion to other forms of energy such as light opens a new possibility of energy-saving, which is of pivotal significance for supplying potential solutions for the present energy crisis. Such energy conversion has shown promising applications in modern sensors, actuators, and energy harvesting. However, the implementation of such technologies is being hindered because most luminescent materials show weak and non-recoverable emissions under mechanical excitation. Herein, a new class of heterojunctioned ZnS/CaZnOS piezophotonic systems is presented, which displays highly reproducible mechanoluminescence (ML) with an unprecedented intensity of over two times higher than that of the widely used commercial ZnS (the state-of-the-art ML material). Density functional theory calculations reveal that the high-performance ML originates from efficient charge transfer and recombination through offset of the valence and conduction bands in the heterojunction interface region. By controlling the ZnS-to-CaZnOS ratio in conjunction with manganese (Mn2+ ) and lanthanide (Ln3+ ) doping, tunable ML across the full spectrum is activated by a small mechanical stimulus of 1 N (10 kPa). The findings demonstrate a novel strategy for constructing efficient ML materials by leveraging interface effects and ultimately promoting practical applications for ML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心心相连完成签到,获得积分10
刚刚
李彦发布了新的文献求助10
刚刚
1秒前
2秒前
善学以致用应助wuya采纳,获得200
3秒前
FashionBoy应助沉静晓丝采纳,获得10
3秒前
桃博发布了新的文献求助10
4秒前
4秒前
ABC完成签到,获得积分10
4秒前
5秒前
5秒前
cyndi完成签到,获得积分10
6秒前
张张橘完成签到,获得积分10
6秒前
陈远远完成签到,获得积分10
7秒前
牙牙完成签到,获得积分10
7秒前
无花果应助ThoseRangers0624采纳,获得30
7秒前
PYL233发布了新的文献求助10
7秒前
7秒前
Akim应助务实的绮山采纳,获得10
8秒前
8秒前
8秒前
正月初九完成签到,获得积分10
9秒前
传奇3应助sendou采纳,获得10
9秒前
9秒前
hautzhl发布了新的文献求助10
10秒前
10秒前
Owen应助李彦采纳,获得10
10秒前
11秒前
Xiaoguo发布了新的文献求助10
12秒前
month发布了新的文献求助10
12秒前
大玲发布了新的文献求助10
12秒前
unfraid发布了新的文献求助10
12秒前
13秒前
13秒前
香蕉觅云应助称心曼安采纳,获得10
13秒前
13秒前
蒋谷兰发布了新的文献求助50
14秒前
沉静晓丝完成签到,获得积分10
14秒前
MFNM发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298080
求助须知:如何正确求助?哪些是违规求助? 4446756
关于积分的说明 13840225
捐赠科研通 4331934
什么是DOI,文献DOI怎么找? 2377972
邀请新用户注册赠送积分活动 1373239
关于科研通互助平台的介绍 1338833