Deep Generative Models for 3D Linker Design

生成语法 计算机科学 生成模型 生成设计 人工智能 背景(考古学) 图形 过程(计算) 机器学习 理论计算机科学 工程类 程序设计语言 运营管理 生物 古生物学 公制(单位)
作者
Fergus Imrie,A.R. Bradley,Mihaela van der Schaar,Charlotte M. Deane
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (4): 1983-1995 被引量:182
标识
DOI:10.1021/acs.jcim.9b01120
摘要

Rational compound design remains a challenging problem for both computational methods and medicinal chemists. Computational generative methods have begun to show promising results for the design problem. However, they have not yet used the power of three-dimensional (3D) structural information. We have developed a novel graph-based deep generative model that combines state-of-the-art machine learning techniques with structural knowledge. Our method ("DeLinker") takes two fragments or partial structures and designs a molecule incorporating both. The generation process is protein-context-dependent, utilizing the relative distance and orientation between the partial structures. This 3D information is vital to successful compound design, and we demonstrate its impact on the generation process and the limitations of omitting such information. In a large-scale evaluation, DeLinker designed 60% more molecules with high 3D similarity to the original molecule than a database baseline. When considering the more relevant problem of longer linkers with at least five atoms, the outperformance increased to 200%. We demonstrate the effectiveness and applicability of this approach on a diverse range of design problems: fragment linking, scaffold hopping, and proteolysis targeting chimera (PROTAC) design. As far as we are aware, this is the first molecular generative model to incorporate 3D structural information directly in the design process. The code is available at https://github.com/oxpig/DeLinker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
慕青应助沉默的夏天采纳,获得10
2秒前
ypp完成签到,获得积分10
2秒前
zz发布了新的文献求助10
2秒前
3秒前
善学以致用应助Shaw采纳,获得10
3秒前
4秒前
猪猪hero应助左岸采纳,获得10
4秒前
SciGPT应助白白1207采纳,获得10
4秒前
段启瑞发布了新的文献求助10
4秒前
5秒前
qqq发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
等你下课发布了新的文献求助10
9秒前
9秒前
zz完成签到,获得积分10
9秒前
司空豁发布了新的文献求助10
10秒前
flymouse完成签到,获得积分10
13秒前
14秒前
17秒前
宋小威完成签到,获得积分10
17秒前
嘴巴张大一点完成签到,获得积分10
18秒前
十二完成签到,获得积分10
19秒前
19秒前
大反应釜发布了新的文献求助10
19秒前
haha0329发布了新的文献求助10
19秒前
orixero应助tuski采纳,获得10
19秒前
23秒前
24秒前
彭于晏应助风趣的灵枫采纳,获得10
25秒前
25秒前
May应助YXT1998采纳,获得20
25秒前
26秒前
小桥流人完成签到 ,获得积分10
27秒前
28秒前
29秒前
饭团完成签到,获得积分10
30秒前
国色不染尘完成签到,获得积分10
30秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032