阴极
电池(电)
插层(化学)
材料科学
高分辨率透射电子显微镜
拉曼光谱
水溶液
离子
无机化学
电解质
电化学
化学工程
化学
纳米技术
电极
物理化学
透射电子显微镜
功率(物理)
有机化学
量子力学
工程类
物理
光学
作者
Sonal Kumar,Vivek Verma,Rodney Chua,Hao Ren,Pinit Kidkhunthod,Catleya Rojviriya,Suchinda Sattayaporn,Frank M. F. de Groot,William Manalastas,Madhavi Srinivasan
标识
DOI:10.1002/batt.202000018
摘要
Abstract Battery cathode materials operating on multivalent‐ion intercalation are prone to short operational lifetimes, traditionally explained to be due to poor solid‐state diffusion. Here, we overcome this problem by using a conversion‐type cathode material and demonstrate the benefits in a FeVO 4 host structure. The rechargeable Zn‐ion battery exhibits stability for an unprecedented operational lifetime of 57 days with a high capacity of 272 mAh g −1 (60 mA g −1 ) over 140 cycles. We use a combination of synchrotron‐based XAS, SRXTM, Raman, XRD and HRTEM techniques to elucidate the cathode material evolution at multilength‐scale for understanding the Zn‐ion storage mechanism. We further highlight the benefits of using a low‐salt concentration electrolyte and pH‐consideration analysis in aqueous battery development, the optimization of which leads to a 4‐fold increase in battery performance as compared to conventional high‐salt concentration electrolyte formulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI