High-resolution emission inventory of gaseous and particulate pollutants in Shandong Province, eastern China

排放清单 环境科学 污染物 空气质量指数 氮氧化物 微粒 燃烧 环境工程 北京 化石燃料 中国 空气污染 空气污染物 环境保护 废物管理 气象学 地理 化学 工程类 有机化学 考古
作者
Pei-Yu Jiang,Xiaoling Chen,Qiu‐Yu Li,Haihua Mo,Lingyu Li
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:259: 120806-120806 被引量:57
标识
DOI:10.1016/j.jclepro.2020.120806
摘要

To characterize the anthropogenic emissions of air pollutants (PM2.5, PM10, VOCs, NOx, SO2, and CO) in Shandong Province, eastern China, the high-resolution emission inventories were developed using the "bottom-up" methodology. The emission sources were categorized to biomass burning, dust, fossil fuel combustion, industrial processes, solvent utilization, waste disposal, and on-road vehicles, with five-level classification and 399 subclasses. Emission factors were collected from China's guidelines on the emissions of atmospheric pollutants and literatures with local measurements. Particularly, those for on-road vehicles were calculated by COPERT v5. The county-level activity data were obtained from the governmental statistics. Results showed that the estimated anthropogenic emissions of PM2.5, PM10, VOCs, NOx, SO2, and CO in Shandong Province in 2016 were 5136.8, 5685.4, 3257.1, 1430.6, 240.6, and 19618.8 kt, respectively. The main emission source of PM2.5 and PM10 were dust and it was industrial processes for VOCs and CO. On-road vehicles and fossil fuel combustion contributed the most to NOx and SO2 emissions, respectively. The composition of emissions by sources for each pollutant differed among cities. Emissions in Shandong displayed remarkable spatial variations, with the highest in the central, southern, and coastal areas. This study could be expected to supply sufficient information and basic data for formulating effective environmental management policies and further improving the air quality in Shandong Province and even in Beijing-Tianjin-Hebei region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
郝郝完成签到,获得积分10
1秒前
2秒前
3秒前
panjy发布了新的文献求助30
3秒前
上官若男应助麋鹿采纳,获得10
4秒前
5秒前
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
啦啦啦发布了新的文献求助10
8秒前
奋斗的荆完成签到,获得积分10
8秒前
11发布了新的文献求助10
8秒前
8秒前
李爱国应助犹豫的忆梅采纳,获得10
8秒前
8秒前
阮楷瑞发布了新的文献求助10
9秒前
cherrychou发布了新的文献求助10
9秒前
10秒前
爱静静应助十九亩哦采纳,获得10
11秒前
kiki发布了新的文献求助10
12秒前
12秒前
12秒前
guajiguaji发布了新的文献求助10
13秒前
13秒前
花花花完成签到,获得积分10
14秒前
春夏秋冬发布了新的文献求助10
14秒前
科研通AI2S应助ZX801采纳,获得10
16秒前
CK完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
17秒前
18秒前
19秒前
Fancy发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157189
求助须知:如何正确求助?哪些是违规求助? 2808483
关于积分的说明 7877835
捐赠科研通 2467029
什么是DOI,文献DOI怎么找? 1313118
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919