Estimating misclassification error in a binary performance indicator: case study of low value care in Australian hospitals

假阳性和假阴性 统计 假阳性悖论 医学 逻辑回归 假阳性率 价值(数学) 数学
作者
Tim Badgery‐Parker,Sallie‐Anne Pearson,Adam G Elshaug
出处
期刊:BMJ Quality & Safety [BMJ]
卷期号:29 (12): 992-999 被引量:1
标识
DOI:10.1136/bmjqs-2019-010564
摘要

Objective Indicators based on hospital administrative data have potential for misclassification error, especially if they rely on clinical detail that may not be well recorded in the data. We applied an approach using modified logistic regression models to assess the misclassification (false-positive and false-negative) rates of low-value care indicators. Design and setting We applied indicators involving 19 procedures to an extract from the New South Wales Admitted Patient Data Collection (1 January 2012 to 30 June 2015) to label episodes as low value. We fit four models (no misclassification, false-positive only, false-negative only, both false-positive and false-negative) for each indicator to estimate misclassification rates and used the posterior probabilities of the models to assess which model fit best. Results False-positive rates were low for most indicators—if the indicator labels care as low value, the care is most likely truly low value according to the relevant recommendation. False-negative rates were much higher but were poorly estimated (wide credible intervals). For most indicators, the models allowing no misclassification or allowing false-negatives but no false-positives had the highest posterior probability. The overall low-value care rate from the indicators was 12%. After adjusting for the estimated misclassification rates from the highest probability models, this increased to 35%. Conclusion Binary performance indicators have a potential for misclassification error, especially if they depend on clinical information extracted from administrative data. Indicators should be validated by chart review, but this is resource-intensive and costly. The modelling approach presented here can be used as an initial validation step to identify and revise indicators that may have issues before continuing to a full chart review validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
是江江哥啊完成签到,获得积分10
刚刚
Daisy应助zwy采纳,获得10
刚刚
1秒前
1秒前
cookie发布了新的文献求助10
2秒前
加美希尔完成签到,获得积分10
2秒前
精明的甜瓜应助郭先森采纳,获得10
2秒前
风中的安双完成签到,获得积分10
3秒前
3秒前
冷傲迎梦完成签到,获得积分20
5秒前
5秒前
vinni发布了新的文献求助10
5秒前
仙人殊恍惚应助研友_ZGR70n采纳,获得10
5秒前
李明月完成签到,获得积分10
5秒前
zhongxuejie完成签到,获得积分10
5秒前
yanziwu94完成签到,获得积分10
5秒前
xh发布了新的文献求助10
5秒前
5秒前
王加通完成签到,获得积分10
5秒前
6秒前
精明的甜瓜应助神羊采纳,获得20
6秒前
asd发布了新的文献求助10
6秒前
ghy完成签到 ,获得积分10
7秒前
火星上芹菜完成签到,获得积分10
8秒前
Yiya发布了新的文献求助10
9秒前
毛通完成签到,获得积分10
9秒前
Zhanghh87应助翎尧采纳,获得10
9秒前
启程完成签到,获得积分10
10秒前
yyj完成签到,获得积分10
10秒前
kydd完成签到,获得积分10
10秒前
lun完成签到,获得积分10
10秒前
10秒前
齐天大圣应助风清扬采纳,获得50
10秒前
完美世界应助r93527005采纳,获得10
11秒前
乐乐应助xh采纳,获得10
11秒前
tyh完成签到,获得积分10
12秒前
梁晓玲发布了新的文献求助10
12秒前
13秒前
春鸮鸟完成签到 ,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051