Estimating misclassification error in a binary performance indicator: case study of low value care in Australian hospitals

假阳性和假阴性 统计 假阳性悖论 医学 逻辑回归 假阳性率 价值(数学) 数学
作者
Tim Badgery‐Parker,Sallie‐Anne Pearson,Adam G Elshaug
出处
期刊:BMJ Quality & Safety [BMJ]
卷期号:29 (12): 992-999 被引量:1
标识
DOI:10.1136/bmjqs-2019-010564
摘要

Objective Indicators based on hospital administrative data have potential for misclassification error, especially if they rely on clinical detail that may not be well recorded in the data. We applied an approach using modified logistic regression models to assess the misclassification (false-positive and false-negative) rates of low-value care indicators. Design and setting We applied indicators involving 19 procedures to an extract from the New South Wales Admitted Patient Data Collection (1 January 2012 to 30 June 2015) to label episodes as low value. We fit four models (no misclassification, false-positive only, false-negative only, both false-positive and false-negative) for each indicator to estimate misclassification rates and used the posterior probabilities of the models to assess which model fit best. Results False-positive rates were low for most indicators—if the indicator labels care as low value, the care is most likely truly low value according to the relevant recommendation. False-negative rates were much higher but were poorly estimated (wide credible intervals). For most indicators, the models allowing no misclassification or allowing false-negatives but no false-positives had the highest posterior probability. The overall low-value care rate from the indicators was 12%. After adjusting for the estimated misclassification rates from the highest probability models, this increased to 35%. Conclusion Binary performance indicators have a potential for misclassification error, especially if they depend on clinical information extracted from administrative data. Indicators should be validated by chart review, but this is resource-intensive and costly. The modelling approach presented here can be used as an initial validation step to identify and revise indicators that may have issues before continuing to a full chart review validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
安然发布了新的文献求助10
4秒前
whh发布了新的文献求助10
6秒前
李健应助未夕晴采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
三黑猫应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
8秒前
杳鸢应助科研通管家采纳,获得10
8秒前
杳鸢应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
劲秉应助科研通管家采纳,获得30
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
乐观的香氛完成签到 ,获得积分10
9秒前
香蕉觅云应助拾遗就是我采纳,获得10
12秒前
14秒前
ding应助安然采纳,获得10
15秒前
zhouling完成签到,获得积分10
15秒前
bravo应助whh采纳,获得10
16秒前
Owen应助whh采纳,获得30
16秒前
不懈奋进应助whh采纳,获得30
16秒前
17秒前
椒盐皮皮虾完成签到 ,获得积分10
17秒前
单薄青烟完成签到 ,获得积分10
18秒前
19秒前
20秒前
哆啦A梦的小小王完成签到,获得积分10
20秒前
21秒前
大道无形我有型完成签到,获得积分10
22秒前
cdsd发布了新的文献求助10
23秒前
小乐色完成签到,获得积分10
23秒前
24秒前
26秒前
李大山完成签到,获得积分10
27秒前
tRNA完成签到,获得积分10
28秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212399
求助须知:如何正确求助?哪些是违规求助? 2861232
关于积分的说明 8127824
捐赠科研通 2527181
什么是DOI,文献DOI怎么找? 1360785
科研通“疑难数据库(出版商)”最低求助积分说明 643341
邀请新用户注册赠送积分活动 615675