碳纤维
电解
材料科学
化学工程
催化作用
电化学
氧化物
无机化学
电极
化学
有机化学
冶金
复合数
物理化学
复合材料
工程类
电解质
作者
Theis Løye Skafte,Zixuan Guan,Michael L. Machala,Chirranjeevi Balaji Gopal,Matteo Monti,Lev Martinez,Eugen Stamate,Simone Sanna,José Antonio Garrido Torres,Ethan J. Crumlin,Max García‐Melchor,Michal Bajdich,William C. Chueh,Christopher R. Graves
出处
期刊:Nature Energy
[Springer Nature]
日期:2019-09-16
卷期号:4 (10): 846-855
被引量:59
标识
DOI:10.1038/s41560-019-0457-4
摘要
High-temperature CO2 electrolysers offer exceptionally efficient storage of renewable electricity in the form of CO and other chemical fuels, but conventional electrodes catalyse destructive carbon deposition. Ceria catalysts are known carbon inhibitors for fuel cell (oxidation) reactions; however, for more severe electrolysis (reduction) conditions, catalyst design strategies remain unclear. Here we establish the inhibition mechanism on ceria and show selective CO2 to CO conversion well beyond the thermodynamic carbon deposition threshold. Operando X-ray photoelectron spectroscopy during CO2 electrolysis—using thin-film model electrodes consisting of samarium-doped ceria, nickel and/or yttria-stabilized zirconia—together with density functional theory modelling, reveal the crucial role of oxidized carbon intermediates in preventing carbon build-up. Using these insights, we demonstrate stable electrochemical CO2 reduction with a scaled-up 16 cm2 ceria-based solid-oxide cell under conditions that rapidly destroy a nickel-based cell, leading to substantially improved device lifetime. CO2 electrolysers store electricity as CO or other chemical fuels, but can suffer from carbon deposition at the electrodes. Skafte et al. identify a mechanistic route to inhibiting carbon build-up in ceria-based electrolysers and build a cell that operates beyond the thermodynamic carbon deposition threshold.
科研通智能强力驱动
Strongly Powered by AbleSci AI