Multi-Constrained Joint Non-Negative Matrix Factorization with Application to Imaging Genomic Study of Lung Metastasis in Soft Tissue Sarcomas

软组织 转移 医学 放射科 癌症研究 内科学 癌症
作者
Jin Deng,Weiming Zeng,Wei Kong,Yuhu Shi,Xiaoyang Mou,Jian Guo
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:24
标识
DOI:10.1109/tbme.2019.2954989
摘要

The study of pathogenic mechanism at the genetic level by imaging genetics methods enables to effectively reveal the association of histopathology and genetics. However, there is a lack of effective and accurate tools to establish association models from macroscopic to microscopic.The multi-constrained joint non-negative matrix factorization (MCJNMF) was developed for simultaneous integration of genomic data and image data to identify common modules related to disease. Two types of data matrices were projected onto a common feature space, in which heterogeneous variables with large coefficients in the same projected direction form a common module. Meanwhile, the correlation between original data features was integrated by using regularization constraints to improve the biological relevance. Sparsity constraints and orthogonal constraints were performed on decomposition factors to minimize the redundancy between different bases and to reduce algorithm complexity.This algorithm was successfully performed on the module identification of lung metastasis in soft tissue sarcomas (STSs) by integrating FDG-PET image and DNA methylation data features. Multilevel analysis on the top extracted modules revealed that these modules were closely related to the lung metastasis. Particularly, several genes with diagnostic potential for lung metastasis can be discovered from high score modules.This method not only can be applied for the accurate identification of patterns related to pathogenic mechanism of diseases, but also has a significant implication for discovering protein biomarkers.This method provides avenues for further studies of identifying complex association patterns of diseases according to different types of biological data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马克发布了新的文献求助10
刚刚
辞轲完成签到,获得积分10
1秒前
善学以致用应助whisper采纳,获得10
3秒前
乐乐应助星亚唐采纳,获得10
3秒前
小蘑菇应助mengloo采纳,获得10
4秒前
asd关闭了asd文献求助
4秒前
5秒前
5秒前
5秒前
jin完成签到,获得积分10
5秒前
一区种子选手完成签到 ,获得积分10
5秒前
6秒前
Winna完成签到,获得积分10
9秒前
Akim应助平常的芝麻采纳,获得10
11秒前
15秒前
橙子完成签到,获得积分10
15秒前
123完成签到,获得积分10
15秒前
不会写诗完成签到 ,获得积分10
16秒前
17秒前
txxxx发布了新的文献求助10
20秒前
daizao完成签到,获得积分0
20秒前
彩色语儿发布了新的文献求助100
20秒前
锤子废柴发布了新的文献求助10
20秒前
脑洞疼应助研友_V8Qmr8采纳,获得10
22秒前
24秒前
A宇完成签到,获得积分10
25秒前
26秒前
mengloo发布了新的文献求助10
28秒前
深情安青应助周凡淇采纳,获得10
29秒前
熊熊面包应助周凡淇采纳,获得10
29秒前
科目三应助周凡淇采纳,获得10
29秒前
大个应助周凡淇采纳,获得10
29秒前
英姑应助周凡淇采纳,获得10
29秒前
NexusExplorer应助周凡淇采纳,获得30
29秒前
星辰大海应助周凡淇采纳,获得10
29秒前
houchengru应助周凡淇采纳,获得10
29秒前
甜甜玫瑰应助周凡淇采纳,获得10
29秒前
香蕉觅云应助锤子废柴采纳,获得10
30秒前
阿童木完成签到,获得积分10
32秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125633
求助须知:如何正确求助?哪些是违规求助? 2775924
关于积分的说明 7728426
捐赠科研通 2431401
什么是DOI,文献DOI怎么找? 1291999
科研通“疑难数据库(出版商)”最低求助积分说明 622301
版权声明 600376