Multi-Constrained Joint Non-Negative Matrix Factorization with Application to Imaging Genomic Study of Lung Metastasis in Soft Tissue Sarcomas

软组织 转移 医学 放射科 癌症研究 内科学 癌症
作者
Jin Deng,Weiming Zeng,Wei Kong,Yuhu Shi,Xiaoyang Mou,Jian Guo
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:24
标识
DOI:10.1109/tbme.2019.2954989
摘要

The study of pathogenic mechanism at the genetic level by imaging genetics methods enables to effectively reveal the association of histopathology and genetics. However, there is a lack of effective and accurate tools to establish association models from macroscopic to microscopic.The multi-constrained joint non-negative matrix factorization (MCJNMF) was developed for simultaneous integration of genomic data and image data to identify common modules related to disease. Two types of data matrices were projected onto a common feature space, in which heterogeneous variables with large coefficients in the same projected direction form a common module. Meanwhile, the correlation between original data features was integrated by using regularization constraints to improve the biological relevance. Sparsity constraints and orthogonal constraints were performed on decomposition factors to minimize the redundancy between different bases and to reduce algorithm complexity.This algorithm was successfully performed on the module identification of lung metastasis in soft tissue sarcomas (STSs) by integrating FDG-PET image and DNA methylation data features. Multilevel analysis on the top extracted modules revealed that these modules were closely related to the lung metastasis. Particularly, several genes with diagnostic potential for lung metastasis can be discovered from high score modules.This method not only can be applied for the accurate identification of patterns related to pathogenic mechanism of diseases, but also has a significant implication for discovering protein biomarkers.This method provides avenues for further studies of identifying complex association patterns of diseases according to different types of biological data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CipherSage应助海棠yiyi采纳,获得50
2秒前
Khr1stINK发布了新的文献求助10
2秒前
2秒前
脑洞疼应助卡卡采纳,获得10
2秒前
2秒前
Rrr发布了新的文献求助10
3秒前
科研通AI5应助zmy采纳,获得10
4秒前
William鉴哲发布了新的文献求助10
4秒前
情怀应助只道寻常采纳,获得10
5秒前
5秒前
cyy完成签到,获得积分20
5秒前
orixero应助小庄采纳,获得10
6秒前
7秒前
侦察兵发布了新的文献求助10
7秒前
司徒元瑶完成签到 ,获得积分10
7秒前
梓榆发布了新的文献求助10
7秒前
7秒前
sweetbearm应助通~采纳,获得10
7秒前
斯文败类应助成就映秋采纳,获得10
8秒前
123456完成签到,获得积分10
8秒前
8秒前
moonlin完成签到 ,获得积分10
8秒前
9秒前
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
11秒前
wanci应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
思源应助蟹黄堡不打折采纳,获得10
11秒前
Lily应助科研通管家采纳,获得40
11秒前
敬老院N号应助科研通管家采纳,获得30
11秒前
zzzq应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
皮皮完成签到 ,获得积分10
11秒前
sallltyyy发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794