Texture Analysis with 3.0-T MRI for Association of Response to Neoadjuvant Chemotherapy in Breast Cancer

医学 乳腺癌 接收机工作特性 随机森林 内科学 置信区间 新辅助治疗 磁共振成像 放射科 磁共振弥散成像 有效扩散系数 线性判别分析 核医学 癌症 人工智能 计算机科学
作者
Na Lae Eun,Daesung Kang,Eun Ju Son,Jeong Seon Park,Ji Hyun Youk,Jeong‐Ah Kim,Hye Mi Gweon
出处
期刊:Radiology [Radiological Society of North America]
卷期号:294 (1): 31-41 被引量:104
标识
DOI:10.1148/radiol.2019182718
摘要

Background Previous studies have suggested that texture analysis is a promising tool in the diagnosis, characterization, and assessment of treatment response in various cancer types. Therefore, application of texture analysis may be helpful for early prediction of pathologic response in breast cancer. Purpose To investigate whether texture analysis of features from MRI is associated with pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer. Materials and Methods This retrospective study included 136 women (mean age, 47.9 years; range, 31–70 years) who underwent NAC and subsequent surgery for breast cancer between January 2012 and August 2017. Patients were monitored with 3.0-T MRI before (pretreatment) and after (midtreatment) three or four cycles of NAC. Texture analysis was performed at pre- and midtreatment T2-weighted MRI, contrast material–enhanced T1-weighted MRI, diffusion-weighted MRI, and apparent diffusion coefficient (ADC) mapping by using commercial software. A random forest method was applied to build a predictive model for classifying those with pCR with use of texture parameters. Diagnostic performance for predicting pCR was assessed and compared with that of six other machine learning classifiers (adaptive boosting, decision tree, k-nearest neighbor, linear support vector machine, naive Bayes, and linear discriminant analysis) by using the Wald test and DeLong method. Results Forty of the 136 patients (29%) achieved pCR after NAC. In the prediction of pCR, the random forest classifier showed the lowest diagnostic performance with pretreatment ADC (area under the receiver operating characteristic curve [AUC], 0.53; 95% confidence interval: 0.44, 0.61) and the highest diagnostic performance with midtreatment contrast-enhanced T1-weighted MRI (AUC, 0.82; 95% confidence interval: 0.74, 0.88) among pre- and midtreatment T2-weighted MRI, contrast-enhanced T1-weighted MRI, diffusion-weighted MRI, and ADC mapping. Conclusion Texture parameters using a random forest method of contrast-enhanced T1-weighted MRI at midtreatment of neoadjuvant chemotherapy were valuable and associated with pathologic complete response in breast cancer. © RSNA, 2019 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清脆火龙果完成签到,获得积分10
刚刚
可爱的函函应助暴躁的苡采纳,获得10
刚刚
我爱吃火锅完成签到,获得积分10
1秒前
1秒前
7九完成签到,获得积分10
1秒前
NexusExplorer应助晞晞采纳,获得10
2秒前
Zx_1993应助典雅涵瑶采纳,获得50
2秒前
乐乐应助Qing采纳,获得10
2秒前
四叶草哦完成签到,获得积分10
3秒前
宋浩奇发布了新的文献求助10
3秒前
Hello应助洁净诗槐采纳,获得10
4秒前
z荩完成签到,获得积分20
4秒前
虚拟的秋寒完成签到,获得积分10
4秒前
4秒前
111发布了新的文献求助10
5秒前
qpisuo发布了新的文献求助10
6秒前
deep完成签到,获得积分20
6秒前
7秒前
7秒前
浮游应助Zhengkeke采纳,获得10
8秒前
orixero应助云山采纳,获得10
9秒前
9秒前
9秒前
SciGPT应助chenping_an采纳,获得10
9秒前
10秒前
Yi羿完成签到 ,获得积分10
10秒前
10秒前
共享精神应助fkhuny采纳,获得10
10秒前
SimonShaw完成签到,获得积分10
10秒前
11秒前
cheng完成签到,获得积分20
11秒前
旺仔冰激凌完成签到,获得积分10
11秒前
12秒前
上官若男应助朴素山兰采纳,获得10
12秒前
12秒前
12秒前
huax发布了新的文献求助10
13秒前
行走的sci完成签到,获得积分10
13秒前
ZhS_发布了新的文献求助10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341864
求助须知:如何正确求助?哪些是违规求助? 4477955
关于积分的说明 13937502
捐赠科研通 4374208
什么是DOI,文献DOI怎么找? 2403393
邀请新用户注册赠送积分活动 1396165
关于科研通互助平台的介绍 1368165