清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Texture Analysis with 3.0-T MRI for Association of Response to Neoadjuvant Chemotherapy in Breast Cancer

医学 乳腺癌 接收机工作特性 随机森林 内科学 置信区间 新辅助治疗 磁共振成像 放射科 磁共振弥散成像 有效扩散系数 线性判别分析 核医学 癌症 人工智能 计算机科学
作者
Na Lae Eun,Daesung Kang,Eun Ju Son,Jeong Seon Park,Ji Hyun Youk,Jeong‐Ah Kim,Hye Mi Gweon
出处
期刊:Radiology [Radiological Society of North America]
卷期号:294 (1): 31-41 被引量:96
标识
DOI:10.1148/radiol.2019182718
摘要

Background Previous studies have suggested that texture analysis is a promising tool in the diagnosis, characterization, and assessment of treatment response in various cancer types. Therefore, application of texture analysis may be helpful for early prediction of pathologic response in breast cancer. Purpose To investigate whether texture analysis of features from MRI is associated with pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer. Materials and Methods This retrospective study included 136 women (mean age, 47.9 years; range, 31–70 years) who underwent NAC and subsequent surgery for breast cancer between January 2012 and August 2017. Patients were monitored with 3.0-T MRI before (pretreatment) and after (midtreatment) three or four cycles of NAC. Texture analysis was performed at pre- and midtreatment T2-weighted MRI, contrast material–enhanced T1-weighted MRI, diffusion-weighted MRI, and apparent diffusion coefficient (ADC) mapping by using commercial software. A random forest method was applied to build a predictive model for classifying those with pCR with use of texture parameters. Diagnostic performance for predicting pCR was assessed and compared with that of six other machine learning classifiers (adaptive boosting, decision tree, k-nearest neighbor, linear support vector machine, naive Bayes, and linear discriminant analysis) by using the Wald test and DeLong method. Results Forty of the 136 patients (29%) achieved pCR after NAC. In the prediction of pCR, the random forest classifier showed the lowest diagnostic performance with pretreatment ADC (area under the receiver operating characteristic curve [AUC], 0.53; 95% confidence interval: 0.44, 0.61) and the highest diagnostic performance with midtreatment contrast-enhanced T1-weighted MRI (AUC, 0.82; 95% confidence interval: 0.74, 0.88) among pre- and midtreatment T2-weighted MRI, contrast-enhanced T1-weighted MRI, diffusion-weighted MRI, and ADC mapping. Conclusion Texture parameters using a random forest method of contrast-enhanced T1-weighted MRI at midtreatment of neoadjuvant chemotherapy were valuable and associated with pathologic complete response in breast cancer. © RSNA, 2019 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小瓶盖完成签到 ,获得积分10
10秒前
cdercder应助科研通管家采纳,获得20
19秒前
眯眯眼的安雁完成签到 ,获得积分10
44秒前
花花521完成签到,获得积分10
47秒前
杪夏二八完成签到 ,获得积分10
48秒前
dashi完成签到 ,获得积分10
50秒前
隐形曼青应助zzzzzer0采纳,获得10
50秒前
陈好好完成签到 ,获得积分10
53秒前
草拟大坝完成签到 ,获得积分0
57秒前
zzzzzer0完成签到,获得积分10
1分钟前
1分钟前
zzzzzer0发布了新的文献求助10
1分钟前
Dong完成签到 ,获得积分10
1分钟前
可夫司机完成签到 ,获得积分10
1分钟前
艾斯巍峨儿完成签到 ,获得积分10
1分钟前
桐桐应助实验狗采纳,获得10
1分钟前
HJJHJH完成签到,获得积分20
1分钟前
HJJHJH发布了新的文献求助80
1分钟前
1分钟前
完美世界应助zzzzzer0采纳,获得10
1分钟前
实验狗发布了新的文献求助10
1分钟前
qq完成签到 ,获得积分10
1分钟前
墨墨完成签到,获得积分10
1分钟前
星辰完成签到 ,获得积分10
2分钟前
研友_Z7grXZ完成签到,获得积分10
2分钟前
2分钟前
研友_Z7grXZ发布了新的文献求助10
2分钟前
vitamin完成签到 ,获得积分10
2分钟前
HEIKU应助羞涩的妙菱采纳,获得10
2分钟前
vsvsgo完成签到,获得积分10
2分钟前
草木完成签到 ,获得积分20
2分钟前
xue完成签到 ,获得积分10
2分钟前
三人水明完成签到 ,获得积分10
2分钟前
犹豫翠萱完成签到 ,获得积分10
3分钟前
WenJun完成签到,获得积分10
3分钟前
jlwang完成签到,获得积分10
3分钟前
3分钟前
3分钟前
曾经不言完成签到 ,获得积分10
3分钟前
凤迎雪飘完成签到,获得积分10
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773684
求助须知:如何正确求助?哪些是违规求助? 3319183
关于积分的说明 10193524
捐赠科研通 3033864
什么是DOI,文献DOI怎么找? 1664811
邀请新用户注册赠送积分活动 796305
科研通“疑难数据库(出版商)”最低求助积分说明 757416