Texture Analysis with 3.0-T MRI for Association of Response to Neoadjuvant Chemotherapy in Breast Cancer

医学 乳腺癌 接收机工作特性 随机森林 内科学 置信区间 新辅助治疗 磁共振成像 放射科 磁共振弥散成像 有效扩散系数 线性判别分析 核医学 癌症 人工智能 计算机科学
作者
Na Lae Eun,Daesung Kang,Eun Ju Son,Jeong Seon Park,Ji Hyun Youk,Jeong‐Ah Kim,Hye Mi Gweon
出处
期刊:Radiology [Radiological Society of North America]
卷期号:294 (1): 31-41 被引量:104
标识
DOI:10.1148/radiol.2019182718
摘要

Background Previous studies have suggested that texture analysis is a promising tool in the diagnosis, characterization, and assessment of treatment response in various cancer types. Therefore, application of texture analysis may be helpful for early prediction of pathologic response in breast cancer. Purpose To investigate whether texture analysis of features from MRI is associated with pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer. Materials and Methods This retrospective study included 136 women (mean age, 47.9 years; range, 31–70 years) who underwent NAC and subsequent surgery for breast cancer between January 2012 and August 2017. Patients were monitored with 3.0-T MRI before (pretreatment) and after (midtreatment) three or four cycles of NAC. Texture analysis was performed at pre- and midtreatment T2-weighted MRI, contrast material–enhanced T1-weighted MRI, diffusion-weighted MRI, and apparent diffusion coefficient (ADC) mapping by using commercial software. A random forest method was applied to build a predictive model for classifying those with pCR with use of texture parameters. Diagnostic performance for predicting pCR was assessed and compared with that of six other machine learning classifiers (adaptive boosting, decision tree, k-nearest neighbor, linear support vector machine, naive Bayes, and linear discriminant analysis) by using the Wald test and DeLong method. Results Forty of the 136 patients (29%) achieved pCR after NAC. In the prediction of pCR, the random forest classifier showed the lowest diagnostic performance with pretreatment ADC (area under the receiver operating characteristic curve [AUC], 0.53; 95% confidence interval: 0.44, 0.61) and the highest diagnostic performance with midtreatment contrast-enhanced T1-weighted MRI (AUC, 0.82; 95% confidence interval: 0.74, 0.88) among pre- and midtreatment T2-weighted MRI, contrast-enhanced T1-weighted MRI, diffusion-weighted MRI, and ADC mapping. Conclusion Texture parameters using a random forest method of contrast-enhanced T1-weighted MRI at midtreatment of neoadjuvant chemotherapy were valuable and associated with pathologic complete response in breast cancer. © RSNA, 2019 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻梦之完成签到 ,获得积分10
刚刚
SuperD完成签到,获得积分10
刚刚
Candy发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
3秒前
4秒前
橙子发布了新的文献求助20
4秒前
猫捡球完成签到,获得积分10
4秒前
5秒前
5秒前
沉默傲薇发布了新的文献求助10
6秒前
6秒前
yixi发布了新的文献求助10
8秒前
shimly0101xx完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
yayika完成签到 ,获得积分10
11秒前
吕别皱眉啊完成签到,获得积分10
11秒前
wujingshuai完成签到,获得积分10
13秒前
14秒前
神奇科研圆完成签到,获得积分10
15秒前
15秒前
黄浦江发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
zhszy525发布了新的文献求助30
16秒前
大方尔安发布了新的文献求助10
16秒前
慕青应助yixi采纳,获得10
17秒前
tachikoma完成签到 ,获得积分10
17秒前
箱箱完成签到,获得积分10
18秒前
隐形曼青应助haha采纳,获得10
18秒前
YaoHui发布了新的文献求助40
20秒前
专注鼠标完成签到,获得积分10
21秒前
自由寒云完成签到,获得积分10
22秒前
23秒前
华仔应助wtt采纳,获得10
23秒前
Lin发布了新的文献求助10
24秒前
丘比特应助黄浦江采纳,获得10
24秒前
大方尔安完成签到,获得积分20
24秒前
25秒前
李健应助cruise采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4586255
求助须知:如何正确求助?哪些是违规求助? 4002782
关于积分的说明 12391137
捐赠科研通 3678896
什么是DOI,文献DOI怎么找? 2027733
邀请新用户注册赠送积分活动 1061200
科研通“疑难数据库(出版商)”最低求助积分说明 947546