Texture Analysis with 3.0-T MRI for Association of Response to Neoadjuvant Chemotherapy in Breast Cancer

医学 乳腺癌 接收机工作特性 随机森林 内科学 置信区间 新辅助治疗 磁共振成像 放射科 磁共振弥散成像 有效扩散系数 线性判别分析 核医学 癌症 人工智能 计算机科学
作者
Na Lae Eun,Daesung Kang,Eun Ju Son,Jeong Seon Park,Ji Hyun Youk,Jeong‐Ah Kim,Hye Mi Gweon
出处
期刊:Radiology [Radiological Society of North America]
卷期号:294 (1): 31-41 被引量:104
标识
DOI:10.1148/radiol.2019182718
摘要

Background Previous studies have suggested that texture analysis is a promising tool in the diagnosis, characterization, and assessment of treatment response in various cancer types. Therefore, application of texture analysis may be helpful for early prediction of pathologic response in breast cancer. Purpose To investigate whether texture analysis of features from MRI is associated with pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer. Materials and Methods This retrospective study included 136 women (mean age, 47.9 years; range, 31–70 years) who underwent NAC and subsequent surgery for breast cancer between January 2012 and August 2017. Patients were monitored with 3.0-T MRI before (pretreatment) and after (midtreatment) three or four cycles of NAC. Texture analysis was performed at pre- and midtreatment T2-weighted MRI, contrast material–enhanced T1-weighted MRI, diffusion-weighted MRI, and apparent diffusion coefficient (ADC) mapping by using commercial software. A random forest method was applied to build a predictive model for classifying those with pCR with use of texture parameters. Diagnostic performance for predicting pCR was assessed and compared with that of six other machine learning classifiers (adaptive boosting, decision tree, k-nearest neighbor, linear support vector machine, naive Bayes, and linear discriminant analysis) by using the Wald test and DeLong method. Results Forty of the 136 patients (29%) achieved pCR after NAC. In the prediction of pCR, the random forest classifier showed the lowest diagnostic performance with pretreatment ADC (area under the receiver operating characteristic curve [AUC], 0.53; 95% confidence interval: 0.44, 0.61) and the highest diagnostic performance with midtreatment contrast-enhanced T1-weighted MRI (AUC, 0.82; 95% confidence interval: 0.74, 0.88) among pre- and midtreatment T2-weighted MRI, contrast-enhanced T1-weighted MRI, diffusion-weighted MRI, and ADC mapping. Conclusion Texture parameters using a random forest method of contrast-enhanced T1-weighted MRI at midtreatment of neoadjuvant chemotherapy were valuable and associated with pathologic complete response in breast cancer. © RSNA, 2019 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白的冰珍完成签到,获得积分10
刚刚
可爱的函函应助书记采纳,获得10
刚刚
昏睡的以寒完成签到,获得积分10
1秒前
凉雨渲发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
JerryZ发布了新的文献求助10
4秒前
雇凶暗杀蛋饺完成签到,获得积分10
6秒前
6秒前
Libra发布了新的文献求助10
7秒前
凉雨渲完成签到,获得积分10
8秒前
可爱的函函应助悦悦采纳,获得10
8秒前
周伟杰完成签到,获得积分10
8秒前
情怀应助书记采纳,获得10
13秒前
科研通AI6应助paws采纳,获得10
14秒前
15秒前
柔弱的凝丝关注了科研通微信公众号
16秒前
zky发布了新的文献求助10
16秒前
16秒前
Orange应助kuny采纳,获得10
17秒前
17秒前
浮游应助东山德克士骑士采纳,获得10
18秒前
陈妙莹完成签到,获得积分20
18秒前
招财鱼完成签到 ,获得积分10
19秒前
丘比特应助竹沐鱼采纳,获得10
20秒前
NexusExplorer应助笨小孩采纳,获得10
22秒前
陈妙莹发布了新的文献求助10
22秒前
oiio完成签到,获得积分10
22秒前
MengYuan完成签到,获得积分10
23秒前
23秒前
cyanide关注了科研通微信公众号
26秒前
高高向日葵完成签到 ,获得积分10
27秒前
27秒前
28秒前
JerryZ发布了新的文献求助10
28秒前
29秒前
29秒前
竹沐鱼完成签到,获得积分20
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420777
求助须知:如何正确求助?哪些是违规求助? 4535755
关于积分的说明 14151514
捐赠科研通 4452650
什么是DOI,文献DOI怎么找? 2442416
邀请新用户注册赠送积分活动 1433847
关于科研通互助平台的介绍 1410975