Texture Analysis with 3.0-T MRI for Association of Response to Neoadjuvant Chemotherapy in Breast Cancer

医学 乳腺癌 接收机工作特性 随机森林 内科学 置信区间 新辅助治疗 磁共振成像 放射科 磁共振弥散成像 有效扩散系数 线性判别分析 核医学 癌症 人工智能 计算机科学
作者
Na Lae Eun,Daesung Kang,Eun Ju Son,Jeong Seon Park,Ji Hyun Youk,Jeong‐Ah Kim,Hye Mi Gweon
出处
期刊:Radiology [Radiological Society of North America]
卷期号:294 (1): 31-41 被引量:104
标识
DOI:10.1148/radiol.2019182718
摘要

Background Previous studies have suggested that texture analysis is a promising tool in the diagnosis, characterization, and assessment of treatment response in various cancer types. Therefore, application of texture analysis may be helpful for early prediction of pathologic response in breast cancer. Purpose To investigate whether texture analysis of features from MRI is associated with pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer. Materials and Methods This retrospective study included 136 women (mean age, 47.9 years; range, 31–70 years) who underwent NAC and subsequent surgery for breast cancer between January 2012 and August 2017. Patients were monitored with 3.0-T MRI before (pretreatment) and after (midtreatment) three or four cycles of NAC. Texture analysis was performed at pre- and midtreatment T2-weighted MRI, contrast material–enhanced T1-weighted MRI, diffusion-weighted MRI, and apparent diffusion coefficient (ADC) mapping by using commercial software. A random forest method was applied to build a predictive model for classifying those with pCR with use of texture parameters. Diagnostic performance for predicting pCR was assessed and compared with that of six other machine learning classifiers (adaptive boosting, decision tree, k-nearest neighbor, linear support vector machine, naive Bayes, and linear discriminant analysis) by using the Wald test and DeLong method. Results Forty of the 136 patients (29%) achieved pCR after NAC. In the prediction of pCR, the random forest classifier showed the lowest diagnostic performance with pretreatment ADC (area under the receiver operating characteristic curve [AUC], 0.53; 95% confidence interval: 0.44, 0.61) and the highest diagnostic performance with midtreatment contrast-enhanced T1-weighted MRI (AUC, 0.82; 95% confidence interval: 0.74, 0.88) among pre- and midtreatment T2-weighted MRI, contrast-enhanced T1-weighted MRI, diffusion-weighted MRI, and ADC mapping. Conclusion Texture parameters using a random forest method of contrast-enhanced T1-weighted MRI at midtreatment of neoadjuvant chemotherapy were valuable and associated with pathologic complete response in breast cancer. © RSNA, 2019 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Unicorn完成签到,获得积分10
刚刚
2秒前
志怪大人完成签到 ,获得积分10
3秒前
彭shuai完成签到,获得积分10
3秒前
SARON完成签到 ,获得积分10
5秒前
cxlhzq完成签到,获得积分0
5秒前
6秒前
Disguise完成签到 ,获得积分10
6秒前
marryhh完成签到 ,获得积分10
6秒前
xinxin完成签到 ,获得积分10
7秒前
police完成签到 ,获得积分10
8秒前
muzi发布了新的文献求助10
9秒前
123完成签到,获得积分20
11秒前
花花懿懿完成签到,获得积分10
11秒前
宁燕完成签到,获得积分10
11秒前
阿靖完成签到,获得积分10
13秒前
花花懿懿发布了新的文献求助10
14秒前
pp完成签到 ,获得积分10
15秒前
15秒前
飘逸的山柏完成签到 ,获得积分10
15秒前
倪兰云完成签到,获得积分20
19秒前
cappuccino完成签到 ,获得积分10
19秒前
wanci应助xiaoyi采纳,获得10
20秒前
呆萌滑板完成签到 ,获得积分10
20秒前
ZXH发布了新的文献求助10
21秒前
Merci完成签到,获得积分10
23秒前
邓代容完成签到 ,获得积分0
26秒前
27秒前
胡可完成签到 ,获得积分10
27秒前
月月鸟完成签到 ,获得积分10
28秒前
子衿完成签到 ,获得积分10
30秒前
31秒前
31秒前
lgl完成签到,获得积分10
32秒前
光晦完成签到 ,获得积分10
33秒前
小鱼儿发布了新的文献求助10
33秒前
精明的盼雁完成签到,获得积分10
34秒前
尘南浔发布了新的文献求助10
34秒前
carbonhan完成签到,获得积分10
34秒前
LmyHusband完成签到,获得积分10
34秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5223798
求助须知:如何正确求助?哪些是违规求助? 4396038
关于积分的说明 13682589
捐赠科研通 4260141
什么是DOI,文献DOI怎么找? 2337783
邀请新用户注册赠送积分活动 1335157
关于科研通互助平台的介绍 1290838