Texture Analysis with 3.0-T MRI for Association of Response to Neoadjuvant Chemotherapy in Breast Cancer

医学 乳腺癌 接收机工作特性 随机森林 内科学 置信区间 新辅助治疗 磁共振成像 放射科 磁共振弥散成像 有效扩散系数 线性判别分析 核医学 癌症 人工智能 计算机科学
作者
Na Lae Eun,Daesung Kang,Eun Ju Son,Jeong Seon Park,Ji Hyun Youk,Jeong‐Ah Kim,Hye Mi Gweon
出处
期刊:Radiology [Radiological Society of North America]
卷期号:294 (1): 31-41 被引量:84
标识
DOI:10.1148/radiol.2019182718
摘要

Background Previous studies have suggested that texture analysis is a promising tool in the diagnosis, characterization, and assessment of treatment response in various cancer types. Therefore, application of texture analysis may be helpful for early prediction of pathologic response in breast cancer. Purpose To investigate whether texture analysis of features from MRI is associated with pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer. Materials and Methods This retrospective study included 136 women (mean age, 47.9 years; range, 31-70 years) who underwent NAC and subsequent surgery for breast cancer between January 2012 and August 2017. Patients were monitored with 3.0-T MRI before (pretreatment) and after (midtreatment) three or four cycles of NAC. Texture analysis was performed at pre- and midtreatment T2-weighted MRI, contrast material-enhanced T1-weighted MRI, diffusion-weighted MRI, and apparent diffusion coefficient (ADC) mapping by using commercial software. A random forest method was applied to build a predictive model for classifying those with pCR with use of texture parameters. Diagnostic performance for predicting pCR was assessed and compared with that of six other machine learning classifiers (adaptive boosting, decision tree, k-nearest neighbor, linear support vector machine, naive Bayes, and linear discriminant analysis) by using the Wald test and DeLong method. Results Forty of the 136 patients (29%) achieved pCR after NAC. In the prediction of pCR, the random forest classifier showed the lowest diagnostic performance with pretreatment ADC (area under the receiver operating characteristic curve [AUC], 0.53; 95% confidence interval: 0.44, 0.61) and the highest diagnostic performance with midtreatment contrast-enhanced T1-weighted MRI (AUC, 0.82; 95% confidence interval: 0.74, 0.88) among pre- and midtreatment T2-weighted MRI, contrast-enhanced T1-weighted MRI, diffusion-weighted MRI, and ADC mapping. Conclusion Texture parameters using a random forest method of contrast-enhanced T1-weighted MRI at midtreatment of neoadjuvant chemotherapy were valuable and associated with pathologic complete response in breast cancer. © RSNA, 2019 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
支半雪完成签到,获得积分10
2秒前
弧光完成签到 ,获得积分10
3秒前
_Kachun完成签到,获得积分10
5秒前
左丘不评完成签到 ,获得积分0
5秒前
牛头人完成签到,获得积分10
5秒前
东asdfghjkl发布了新的文献求助30
7秒前
7秒前
随心完成签到 ,获得积分10
11秒前
余淮完成签到,获得积分10
12秒前
zyfqpc完成签到,获得积分10
15秒前
东方越彬发布了新的文献求助10
17秒前
rookie完成签到,获得积分10
20秒前
结实的德地完成签到,获得积分10
21秒前
大模型应助CY采纳,获得10
22秒前
yww完成签到,获得积分10
23秒前
LVVVB完成签到,获得积分10
25秒前
fuguier发布了新的文献求助10
25秒前
28秒前
大方博涛完成签到,获得积分10
30秒前
khurram完成签到,获得积分10
30秒前
31秒前
eyu完成签到,获得积分10
31秒前
小木子发布了新的文献求助10
32秒前
33秒前
小背包完成签到 ,获得积分10
33秒前
37秒前
eyu发布了新的文献求助10
38秒前
领导范儿应助科研通管家采纳,获得10
40秒前
搜集达人应助科研通管家采纳,获得10
40秒前
40秒前
40秒前
王多肉给王多肉的求助进行了留言
41秒前
Jasper应助小木子采纳,获得10
41秒前
i羽翼深蓝i完成签到,获得积分10
42秒前
CY发布了新的文献求助10
42秒前
44秒前
Dlan完成签到,获得积分10
45秒前
丘比特应助东方越彬采纳,获得20
46秒前
47秒前
东东呀完成签到,获得积分10
49秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137101
求助须知:如何正确求助?哪些是违规求助? 2788086
关于积分的说明 7784523
捐赠科研通 2444109
什么是DOI,文献DOI怎么找? 1299758
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011