亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Texture Analysis with 3.0-T MRI for Association of Response to Neoadjuvant Chemotherapy in Breast Cancer

医学 乳腺癌 接收机工作特性 随机森林 内科学 置信区间 新辅助治疗 磁共振成像 放射科 磁共振弥散成像 有效扩散系数 线性判别分析 核医学 癌症 人工智能 计算机科学
作者
Na Lae Eun,Daesung Kang,Eun Ju Son,Jeong Seon Park,Ji Hyun Youk,Jeong‐Ah Kim,Hye Mi Gweon
出处
期刊:Radiology [Radiological Society of North America]
卷期号:294 (1): 31-41 被引量:117
标识
DOI:10.1148/radiol.2019182718
摘要

Background Previous studies have suggested that texture analysis is a promising tool in the diagnosis, characterization, and assessment of treatment response in various cancer types. Therefore, application of texture analysis may be helpful for early prediction of pathologic response in breast cancer. Purpose To investigate whether texture analysis of features from MRI is associated with pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer. Materials and Methods This retrospective study included 136 women (mean age, 47.9 years; range, 31-70 years) who underwent NAC and subsequent surgery for breast cancer between January 2012 and August 2017. Patients were monitored with 3.0-T MRI before (pretreatment) and after (midtreatment) three or four cycles of NAC. Texture analysis was performed at pre- and midtreatment T2-weighted MRI, contrast material-enhanced T1-weighted MRI, diffusion-weighted MRI, and apparent diffusion coefficient (ADC) mapping by using commercial software. A random forest method was applied to build a predictive model for classifying those with pCR with use of texture parameters. Diagnostic performance for predicting pCR was assessed and compared with that of six other machine learning classifiers (adaptive boosting, decision tree, k-nearest neighbor, linear support vector machine, naive Bayes, and linear discriminant analysis) by using the Wald test and DeLong method. Results Forty of the 136 patients (29%) achieved pCR after NAC. In the prediction of pCR, the random forest classifier showed the lowest diagnostic performance with pretreatment ADC (area under the receiver operating characteristic curve [AUC], 0.53; 95% confidence interval: 0.44, 0.61) and the highest diagnostic performance with midtreatment contrast-enhanced T1-weighted MRI (AUC, 0.82; 95% confidence interval: 0.74, 0.88) among pre- and midtreatment T2-weighted MRI, contrast-enhanced T1-weighted MRI, diffusion-weighted MRI, and ADC mapping. Conclusion Texture parameters using a random forest method of contrast-enhanced T1-weighted MRI at midtreatment of neoadjuvant chemotherapy were valuable and associated with pathologic complete response in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xlxu发布了新的文献求助10
1秒前
张萌发布了新的文献求助10
2秒前
6秒前
vida完成签到 ,获得积分10
7秒前
仰勒完成签到 ,获得积分10
10秒前
山川日月完成签到,获得积分10
10秒前
懒骨头兄发布了新的文献求助10
11秒前
猫猫祟完成签到 ,获得积分10
16秒前
点点点完成签到 ,获得积分10
22秒前
拼搏向上完成签到,获得积分10
22秒前
inyh59完成签到,获得积分10
23秒前
26秒前
刻苦的溪流完成签到,获得积分10
28秒前
28秒前
sofia发布了新的文献求助10
29秒前
大壮发布了新的文献求助10
31秒前
科目三应助inyh59采纳,获得10
32秒前
shimly0101xx发布了新的文献求助10
33秒前
xyy完成签到,获得积分20
35秒前
Hello应助samsijyu采纳,获得10
36秒前
Lulu完成签到 ,获得积分10
41秒前
summer完成签到 ,获得积分10
41秒前
43秒前
情怀应助cc采纳,获得10
45秒前
透彻含义发布了新的文献求助10
46秒前
科研通AI6应助无限猫咪采纳,获得10
50秒前
大个应助科研通管家采纳,获得10
52秒前
上官若男应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
Jasper应助科研通管家采纳,获得10
52秒前
大个应助科研通管家采纳,获得10
52秒前
顾矜应助科研通管家采纳,获得10
52秒前
情怀应助科研通管家采纳,获得10
53秒前
sss完成签到 ,获得积分10
59秒前
笔记本应助null采纳,获得150
1分钟前
1分钟前
1分钟前
cc发布了新的文献求助10
1分钟前
予安发布了新的文献求助10
1分钟前
无花果应助3sigma采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616992
求助须知:如何正确求助?哪些是违规求助? 4701328
关于积分的说明 14913361
捐赠科研通 4747615
什么是DOI,文献DOI怎么找? 2549174
邀请新用户注册赠送积分活动 1512299
关于科研通互助平台的介绍 1474049