Biotypes of major depressive disorder: Neuroimaging evidence from resting-state default mode network patterns

重性抑郁障碍 默认模式网络 楔前 静息状态功能磁共振成像 功能磁共振成像 后扣带 神经影像学 心理学 子群分析 扣带回前部 医学 神经科学 内科学 荟萃分析 认知
作者
Siming Liang,Wei Deng,Xiaojing Li,Andrew J. Greenshaw,Qiang Wang,Mingli Li,Xiaohong Ma,Tongjian Bai,Qijing Bo,Jian Cao,Guanmao Chen,Wei Chen,Chang Cheng,Yuqi Cheng,Xilong Cui,Jia Duan,Yiru Fang,Qiyong Gong,Wenbin Guo,Zhenghua Hou,Lan Hu,Li Kuang,Li Feng,Kaiming Li,Yansong Liu,Zhening Liu,Yicheng Long,Qiang Luo,Huaqing Meng,Daihui Peng,Hu Qiu,Jiang Qiu,Yongjia Shen,Yushu Shi,Tianmei Si,Chuanyue Wang,Fei Wang,Kai Wang,Li Wang,Xiang Wang,Ying Wang,Xiaoping Wu,Xinran Wu,Chunming Xie,Gary Xie,Hui Xie,Peng Xie,Xiufeng Xu,Hong Yang,Jian Yang,Hua Yu,Jiashu Yao,Shuqiao Yao,Yingying Yin,Yonggui Yuan,Yu‐Feng Zang,Aixia Zhang,Hong Zhang,Kerang Zhang,Zhijun Zhang,Jingping Zhao,Rubai Zhou,Yongzhao Zhou,Chao‐Jie Zou,Xi‐Nian Zuo,Yan Chen,Tao Li
出处
期刊:NeuroImage: Clinical [Elsevier]
卷期号:28: 102514-102514 被引量:49
标识
DOI:10.1016/j.nicl.2020.102514
摘要

Major depressive disorder (MDD) is heterogeneous disorder associated with aberrant functional connectivity within the default mode network (DMN). This study focused on data-driven identification and validation of potential DMN-pattern-based MDD subtypes to parse heterogeneity of the disorder. The sample comprised 1397 participants including 690 patients with MDD and 707 healthy controls (HC) registered from multiple sites based on the REST-meta-MDD Project in China. Baseline resting-state functional magnetic resonance imaging (rs-fMRI) data was recorded for each participant. Discriminative features were selected from DMN between patients and HC. Patient subgroups were defined by K-means and principle component analysis in the multi-site datasets and validated in an independent single-site dataset. Statistical significance of resultant clustering were confirmed. Demographic and clinical variables were compared between identified patient subgroups. Two MDD subgroups with differing functional connectivity profiles of DMN were identified in the multi-site datasets, and relatively stable in different validation samples. The predominant dysfunctional connectivity profiles were detected among superior frontal cortex, ventral medial prefrontal cortex, posterior cingulate cortex and precuneus, whereas one subgroup exhibited increases of connectivity (hyperDMN MDD) and another subgroup showed decreases of connectivity (hypoDMN MDD). The hyperDMN subgroup in the discovery dataset had age-related severity of depressive symptoms. Patient subgroups had comparable demographic and clinical symptom variables. Findings suggest the existence of two neural subtypes of MDD associated with different dysfunctional DMN connectivity patterns, which may provide useful evidence for parsing heterogeneity of depression and be valuable to inform the search for personalized treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助勾子采纳,获得10
刚刚
丝丝完成签到 ,获得积分10
刚刚
1秒前
悲凉的靖易完成签到,获得积分20
1秒前
Jiaqi0315完成签到,获得积分10
1秒前
小t要读top博完成签到,获得积分10
1秒前
李健应助Lam采纳,获得10
1秒前
斯文败类应助北北北采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
科研通AI6应助自然如冰采纳,获得10
2秒前
111发布了新的文献求助10
3秒前
星辰大海应助勤劳觅山采纳,获得10
3秒前
橘子发布了新的文献求助10
4秒前
4秒前
体贴迎曼完成签到 ,获得积分10
4秒前
5秒前
Jiaqi0315发布了新的文献求助10
5秒前
豆豆豆豆完成签到,获得积分10
6秒前
yaoyao发布了新的文献求助10
6秒前
7秒前
yibo发布了新的文献求助10
7秒前
AAA建材王哥完成签到,获得积分10
7秒前
JamesPei应助111采纳,获得10
8秒前
SciGPT应助纸鹤采纳,获得10
9秒前
9秒前
9秒前
10秒前
Zephyr完成签到,获得积分10
10秒前
潇湘魂发布了新的文献求助10
11秒前
北北北发布了新的文献求助10
12秒前
人间世完成签到 ,获得积分10
13秒前
酷波er应助巫马尔槐采纳,获得10
13秒前
把秘密当成玩笑完成签到,获得积分10
14秒前
14秒前
14秒前
冰糖橙子发布了新的文献求助10
15秒前
15秒前
tantan完成签到,获得积分10
16秒前
科研通AI6应助19826536343采纳,获得10
17秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442393
求助须知:如何正确求助?哪些是违规求助? 4552598
关于积分的说明 14237646
捐赠科研通 4473916
什么是DOI,文献DOI怎么找? 2451715
邀请新用户注册赠送积分活动 1442571
关于科研通互助平台的介绍 1418541