Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte

材料科学 烧结 电解质 陶瓷 导电体 化学工程 快离子导体 复合材料 冶金 电极 物理化学 工程类 化学
作者
Li Yang,Qiushi Dai,Lei Liu,Dingsheng Shao,Kaili Luo,Sidra Jamil,Hong Liu,Zhigao Luo,Baobao Chang,Xianyou Wang
出处
期刊:Ceramics International [Elsevier]
卷期号:46 (8): 10917-10924 被引量:159
标识
DOI:10.1016/j.ceramint.2020.01.106
摘要

Solid electrolytes could address the increasingly urgent safety and energy density concerns of lithium-ion batteries. Among several kinds of solid electrolytes, Ta-doped Li7La3Zr2O12 (Ta-LLZO) became a research hotspot because of its high Li-ion conductivity and chemical stability against Li-metal and air. However, the preparation of high quality LLZO ceramic electrolyte via conventional air ambient sintering method is still a big challenge due to the serious “Li-loss” and abnormal grain growth phenomenon during the long-time high-temperature sintering process. Herein, a new rapid ultra-high-temperature air ambient sintering method without mother powder (MP) is put forward for the preparation of high quality Ta-LLZO ceramic electrolyte. The rapid sintering strategy can effectively restrain “Li-loss”. Furthermore, it is demonstrated that the none-mother-powder method is superior to traditional mother-powder method. Ta-LLZO ceramics sintered without MP via this rapid sintering method own small grain size, tight grain boundary, dense microstructure and high conductivity. Specifically, the Ta-LLZO ceramic sintered at 1360 °C for 10 min without MP exhibits high conductivity (8.5 × 10−4 S cm−1 at 25 °C) and high relative density (97%), which equate those made by hot pressing sintering method. Without MP, the sintering process can avoid a lot of material waste and simplify the operation process. Moreover, the rapid sintering process can sharply shorten sintering time and reduce energy consumption. Therefore, this low-cost high-efficient sintering strategy can be effectively used in the large-scale production of high-quality Ta-LLZO ceramic electrolyte.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
聪慧不二完成签到 ,获得积分10
1秒前
科研通AI5应助nekoneko采纳,获得10
2秒前
搜集达人应助星语花采纳,获得10
2秒前
陶醉沛菡发布了新的文献求助10
2秒前
2秒前
白方明发布了新的文献求助10
4秒前
4秒前
4秒前
6D的D发布了新的文献求助10
4秒前
5秒前
5251发布了新的文献求助10
5秒前
wanci应助北望采纳,获得10
5秒前
科研通AI5应助YD采纳,获得10
5秒前
6秒前
7秒前
Lion发布了新的文献求助10
7秒前
妮妮发布了新的文献求助10
7秒前
星星发布了新的文献求助10
7秒前
自然的曼安关注了科研通微信公众号
7秒前
Hungrylunch应助霁瑶采纳,获得30
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
藿藿完成签到,获得积分10
9秒前
10秒前
SciGPT应助666666采纳,获得10
11秒前
TJC发布了新的文献求助10
11秒前
礼岁岁完成签到 ,获得积分10
11秒前
Meow完成签到,获得积分20
11秒前
ifast完成签到 ,获得积分10
12秒前
hh完成签到,获得积分10
13秒前
13秒前
赘婿应助蒺藜采纳,获得10
14秒前
huaijie发布了新的文献求助10
14秒前
yy发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481226
求助须知:如何正确求助?哪些是违规求助? 3071419
关于积分的说明 9122057
捐赠科研通 2763201
什么是DOI,文献DOI怎么找? 1516316
邀请新用户注册赠送积分活动 701479
科研通“疑难数据库(出版商)”最低求助积分说明 700319