Nonintrusive Monitoring of Mental Fatigue Status Using Epidermal Electronic Systems and Machine-Learning Algorithms

可穿戴计算机 计算机科学 可穿戴技术 数码产品 人工智能 机器学习 精神疲劳 决策树 感觉 算法 工程类 嵌入式系统 心理学 应用心理学 电气工程 社会心理学
作者
Zhikang Zeng,Zhao Huang,Kangmin Leng,Wuxiao Han,Hao Niu,Yan Yu,Qing Ling,Jihong Liu,Zhigang Wu,Jianfeng Zang
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:5 (5): 1305-1313 被引量:47
标识
DOI:10.1021/acssensors.9b02451
摘要

Mental fatigue, characterized by subjective feelings of "tiredness" and "lack of energy", can degrade individual performance in a variety of situations, for example, in motor vehicle driving or while performing surgery. Thus, a method for nonintrusive monitoring of mental fatigue status is urgently needed. Recent research shows that physiological signal-based fatigue-classification methods using wearable electronics can be sufficiently accurate; by contrast, rigid, bulky devices constrain the behavior of those wearing them, potentially interfering with test signals. Recently, wearable electronics, such as epidermal electronics systems (EES) and electronic tattoos (E-tattoos), have been developed to meet the requirements for the comfortable measurement of various physiological signals. However, comfortable, effective, and nonintrusive monitoring of mental fatigue levels remains to be fulfilled. In this work, an EES is established to simultaneously detect multiple physiological signals in a comfortable and nonintrusive way. Machine-learning algorithms are employed to determine the mental fatigue levels and a predictive accuracy of up to 89% is achieved based on six different kinds of physiological features using decision tree algorithms. Furthermore, EES with the trained predictive model are applied to monitor in situ human mental fatigue levels when doing several routine research jobs, as well as the effect of relaxation methods in relieving fatigue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
北城无夏发布了新的文献求助10
2秒前
2秒前
纯真含灵发布了新的文献求助10
3秒前
甜甜玫瑰应助科研通管家采纳,获得10
3秒前
oceanao应助科研通管家采纳,获得30
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
学生发布了新的文献求助10
3秒前
所所应助科研通管家采纳,获得10
3秒前
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
甜甜玫瑰应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
tianzml0应助科研通管家采纳,获得10
4秒前
tianzml0应助科研通管家采纳,获得10
4秒前
tianzml0应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
调研昵称发布了新的文献求助10
4秒前
舒适的冰凡完成签到,获得积分10
5秒前
咩咩发布了新的文献求助10
6秒前
8秒前
life发布了新的文献求助20
10秒前
Hello应助XIXI采纳,获得10
10秒前
Hello应助lkalvnldv采纳,获得10
10秒前
悦耳一江发布了新的文献求助20
10秒前
tuanheqi发布了新的文献求助20
11秒前
junjun发布了新的文献求助10
11秒前
炙热发箍完成签到,获得积分10
11秒前
北城无夏完成签到,获得积分20
13秒前
斯文败类应助辛勤香岚采纳,获得10
13秒前
lingyan hu完成签到 ,获得积分10
15秒前
科研通AI2S应助N7采纳,获得10
15秒前
17秒前
槐序完成签到,获得积分10
18秒前
19秒前
Enkcy完成签到,获得积分10
21秒前
咩咩完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164329
求助须知:如何正确求助?哪些是违规求助? 2815119
关于积分的说明 7907636
捐赠科研通 2474677
什么是DOI,文献DOI怎么找? 1317626
科研通“疑难数据库(出版商)”最低求助积分说明 631871
版权声明 602234