医学
分割
组内相关
卷积神经网络
人工智能
放射科
模式识别(心理学)
计算机科学
临床心理学
心理测量学
作者
Hulin Kuang,Bijoy K. Menon,Sung‐Il Sohn,Wu Qiu
标识
DOI:10.1016/j.media.2021.101984
摘要
Detecting early infarct (EI) plays an essential role in patient selection for reperfusion therapy in the management of acute ischemic stroke (AIS). EI volume at acute or hyper-acute stage can be measured using advanced pre-treatment imaging, such as MRI and CT perfusion. In this study, a novel multi-task learning approach, EIS-Net, is proposed to segment EI and score Alberta Stroke Program Early CT Score (ASPECTS) simultaneously on baseline non-contrast CT (NCCT) scans of AIS patients. The EIS-Net comprises of a 3D triplet convolutional neural network (T-CNN) for EI segmentation and a multi-region classification network for ASPECTS scoring. T-CNN has triple encoders with original NCCT, mirrored NCCT, and atlas as inputs, as well as one decoder. A comparison disparity block (CDB) is designed to extract and enhance image contexts. In the decoder, a multi-level attention gate module (MAGM) is developed to recalibrate the features of the decoder for both segmentation and classification tasks. Evaluations using a high-quality dataset comprising of baseline NCCT and concomitant diffusion weighted MRI (DWI) as reference standard of 260 patients with AIS show that the proposed EIS-Net can accurately segment EI. The EIS-Net segmented EI volume strongly correlates with EI volume on DWI (r=0.919), and the mean difference between the two volumes is 8.5 mL. For ASPECTS scoring, the proposed EIS-Net achieves an intraclass correlation coefficient of 0.78 for total 10-point ASPECTS and a kappa of 0.75 for dichotomized ASPECTS (≤ 4 vs. >4). Both EI segmentation and ASPECTS scoring tasks achieve state-of-the-art performances.
科研通智能强力驱动
Strongly Powered by AbleSci AI