Graphene-covered transition metal halide molecules as efficient and durable electrocatalysts for oxygen reduction and evolution reactions

石墨烯 催化作用 分子 材料科学 氧还原反应 过渡金属 氧还原 金属 无机化学 卤化物 组合化学 纳米技术 电化学 化学 有机化学 物理化学 电极 冶金
作者
Detao Zhang,Jing Zhang,Lele Gong,Y. Zhu,Lipeng Zhang,Zhenhai Xia
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:21 (41): 23094-23101 被引量:9
标识
DOI:10.1039/c9cp04618f
摘要

Proton exchange fuel cells (PEFCs) are one of the most popular and promising energy conversion devices because of their highly stable and efficient membranes in acidic media, but there is a lack of durable non-noble metal electrocatalysts suitable for acidic environments. Herein, we designed a new type of electrocatalysts consisting of transition metal halide molecules covered by graphene sheets, which is supported by experiments. To rapidly screen the best catalysts from numerous candidate materials, the electronic structures, reaction free energies and overpotentials of those graphene-covered halide catalysts were studied by the first-principles calculations to predict the catalytic activities for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). An intrinsic descriptor, the electrostatic force induced by the metallic ions, was found to well describe the catalytic activities and provide a better understanding of the local electrical field effects on catalytic activities. The spin-down d-band center was also introduced to describe catalytic activities of the catalysts. The results demonstrate that the graphene-covered CrBr2 shows the best bifunctional catalytic activities for fuel cells while graphene-covered CoF2 could well facilitate H2O2 production. These catalysts are better than the best commercial noble metal catalysts (e.g., Pt and RuO2) in terms of overpotentials and activities. This work provides a theoretical base for rationally designing durable electrocatalysts with excellent catalytic activities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
澄澄橙橙紫完成签到,获得积分10
刚刚
正直的飞丹完成签到,获得积分10
刚刚
刚刚
冯梦梦发布了新的文献求助10
1秒前
完美世界应助无辜冰淇淋采纳,获得10
1秒前
安静的缘分完成签到,获得积分10
1秒前
多啦a萌完成签到,获得积分10
1秒前
星希完成签到 ,获得积分10
1秒前
1秒前
刻苦从阳完成签到,获得积分10
2秒前
455完成签到,获得积分20
2秒前
orixero应助大力采纳,获得10
2秒前
情怀应助踏雾采纳,获得10
2秒前
ZLQ完成签到,获得积分10
2秒前
将个烂就完成签到,获得积分10
2秒前
3秒前
汉桑波欸完成签到,获得积分10
3秒前
潇洒芷蕊完成签到,获得积分10
4秒前
小郭发布了新的文献求助10
4秒前
耐凡不哭发布了新的文献求助10
4秒前
暴富小羊发布了新的文献求助10
4秒前
风信子完成签到,获得积分10
4秒前
zhongcy完成签到,获得积分10
4秒前
柯0完成签到,获得积分10
5秒前
Archer完成签到,获得积分10
5秒前
卓垚完成签到,获得积分10
5秒前
ljx完成签到 ,获得积分0
6秒前
飞飞飞发布了新的文献求助10
6秒前
北欧海盗完成签到,获得积分10
7秒前
英姑应助王艺霖采纳,获得10
8秒前
Fighting发布了新的文献求助10
8秒前
Z1完成签到,获得积分10
8秒前
8秒前
爆米花应助qiao采纳,获得10
8秒前
王粒完成签到,获得积分10
8秒前
8秒前
Orange应助悲伤的小奶酪采纳,获得10
8秒前
9秒前
yuanshl1985发布了新的文献求助10
9秒前
郭敬一完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658821
求助须知:如何正确求助?哪些是违规求助? 4824516
关于积分的说明 15083291
捐赠科研通 4817352
什么是DOI,文献DOI怎么找? 2578137
邀请新用户注册赠送积分活动 1532856
关于科研通互助平台的介绍 1491634