StormSim-CHRPS: Coastal Hazards Rapid Prediction System

环境科学 海岸灾害 海岸带 地质学 危害 海岸
作者
Marissa J. Torres,Norberto C. Nadal-Caraballo,Efrain. Ramos-Santiago,Madison O. Campbell,Victor M. Gonzalez,Jeffrey A. Melby,Alexandros A. Taflanidis
出处
期刊:Journal of Coastal Research [BioOne (Coastal Education and Research Foundation)]
卷期号:95: 1320-1325
标识
DOI:10.2112/si95-254.1
摘要

Torres, M.J.; Nadal-Caraballo, N.C.; Ramos-Santiago, E.; Campbell, M.O.; Gonzalez, V.M.; Melby, J.A., and Taflanidis, A.A., 2020. StormSim-CHRPS: Coastal Hazards Rapid Prediction System. In: Malvarez, G. and Navas, F. (eds.), Global Coastal Issues of 2020. Journal of Coastal Research, Special Issue No. 95, pp. 1320-1325. Coconut Creek (Florida), ISSN 0749-0208.Recent advances in high-performance computing and numerical modeling have resulted in the development of high-fidelity storm surge and wave simulation models that produce accurate and detailed representation of physical (hydrodynamic) processes that can support high-accuracy forecasting applications. Unfortunately, the computational demand of these high-fidelity models makes practical application for real-time emergency management and operations challenging. However, metamodeling of storm response has matured to the point of application and has the advantage of extremely fast simulation with only minor degradation of accuracy. The StormSim Coastal Hazards Rapid Prediction System (StormSim-CHRPS) performs rapid prediction of coastal storm hazards, including real-time hurricane-induced flooding and risk assessment. Its enhanced computational efficiency was developed using a machine learning method called Gaussian process metamodeling (GPM). As a result, StormSim-CHRPS predictions preserve the accuracy of the high-fidelity hydrodynamic numerical models archived and distributed through the Coastal Hazards System (CHS). A hurricane parametrization approach employed in coastal hazard studies, known as the joint probability method (JPM), provides the input to the GPM. Possible GPM outputs include a wide range of coastal hazards, including storm surge, wave height, period, and direction, currents, wind, and rainfall. The implementation of GPM allows StormSim-CHRPS to efficiently and accurately predict the response of a hurricane ensemble in a matter of a few seconds and tens of thousands of different hurricane scenarios in a few minutes, within a probabilistic rapid prediction framework, making it an ideal technology for real-time hazard prediction and long-term risk assessment applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mayeleven发布了新的文献求助30
2秒前
沉默丹亦发布了新的文献求助30
2秒前
绿兔子完成签到,获得积分10
3秒前
3秒前
完美世界应助66采纳,获得30
4秒前
yafei完成签到 ,获得积分10
4秒前
现实的宝马完成签到,获得积分10
5秒前
我不吃牛肉完成签到,获得积分10
6秒前
7秒前
程传勇完成签到,获得积分10
7秒前
11111111111完成签到,获得积分10
7秒前
37完成签到,获得积分10
10秒前
小夫应助百岁小咪采纳,获得10
14秒前
小帅完成签到,获得积分10
14秒前
白白发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
16秒前
zq应助科研通管家采纳,获得10
16秒前
zq应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
17秒前
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733271
求助须知:如何正确求助?哪些是违规求助? 5347662
关于积分的说明 15323495
捐赠科研通 4878407
什么是DOI,文献DOI怎么找? 2621220
邀请新用户注册赠送积分活动 1570329
关于科研通互助平台的介绍 1527224