Differential Expression of miRNA in the Peripheral Blood Mononuclear Cells in Myasthenia Gravis with Muscle-Specific Receptor Tyrosine Kinase Antibodies

重症肌无力 小RNA 外周血单个核细胞 抗体 基因 酪氨酸激酶 下调和上调 基因表达 生物 分子生物学 受体 免疫学 癌症研究 遗传学 体外
作者
Ying Kiat Tan,Li Zhu,Liying Cui,Yuzhou Guan
出处
期刊:Critical Reviews in Eukaryotic Gene Expression [Begell House]
卷期号:31 (2): 1-15 被引量:9
标识
DOI:10.1615/critreveukaryotgeneexpr.2021037369
摘要

To determine if differential profile of miRNAs in peripheral blood mononuclear cells (PBMCs) could be identified in muscle-specific receptor tyrosine kinase antibody positive myasthenia gravis (MuSK-MG) and linked to disease stage, a case-control method was used to compare the difference in miRNA expression profiles of PBMCs using next generation sequencing (NGS) in MuSK-MG patients and healthy controls (HCs). Six significant miRNAs from the discovery set were then validated using RT-qPCR in 11 MuSK-MG patients and 10 HCs. A unique miRNA prediction algorithm was used to predict the target genes of differentially expressed miRNAs and a network of miRNA gene pathways. Compared with HCs, 101 differentially expressed miRNAs were screened in MuSK-MG, of which 5 miRNAs were upregulated, and 96 miRNAs were downregulated. The top six differentially expressed molecules were selected for verification; four of them (miR-340-5p, miR-106b-5p, miR-27a-3p, and miR-15a-3p) were significantly different. The network analysis of miRNA gene pathways revealed that differentially expressed miRNAs were involved in a complex set of biological processes. Clinically, the four miRNAs that were validated are not correlated to MuSK antibody titers and quantitative myasthenia gravis score. Four miRNAs that were validated in this study have specificity to distinguish MuSK-MG from HCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bliss发布了新的文献求助10
2秒前
周文辉关注了科研通微信公众号
3秒前
灵长类发布了新的文献求助10
3秒前
TUAN完成签到,获得积分10
3秒前
一耶随风完成签到,获得积分10
4秒前
悦耳紫霜发布了新的文献求助10
4秒前
5秒前
Orange应助研友采纳,获得10
6秒前
6秒前
守护发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
Augreen完成签到,获得积分10
8秒前
tianxiong完成签到,获得积分10
9秒前
川坂日拓完成签到,获得积分10
9秒前
灵长类完成签到,获得积分10
9秒前
小蘑菇应助小小怪采纳,获得10
10秒前
赘婿应助TTT0530采纳,获得10
11秒前
慕青应助川坂日拓采纳,获得10
12秒前
程铭璇完成签到,获得积分10
12秒前
周文辉发布了新的文献求助10
13秒前
13秒前
冥灵花火发布了新的文献求助10
13秒前
14秒前
17秒前
美好师发布了新的文献求助10
17秒前
星辰大海应助xixihaha采纳,获得10
17秒前
正直静曼完成签到 ,获得积分10
17秒前
18秒前
177希希发布了新的文献求助10
19秒前
阿力完成签到 ,获得积分10
20秒前
为医消得人憔悴完成签到 ,获得积分10
20秒前
shunyi完成签到,获得积分10
21秒前
21秒前
万能图书馆应助shunyi采纳,获得10
24秒前
kkk完成签到,获得积分10
25秒前
大秦帝国完成签到,获得积分10
25秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4916187
求助须知:如何正确求助?哪些是违规求助? 4189726
关于积分的说明 13012119
捐赠科研通 3959063
什么是DOI,文献DOI怎么找? 2170518
邀请新用户注册赠送积分活动 1188698
关于科研通互助平台的介绍 1096671