A 10-gene-methylation-based signature for prognosis prediction of colorectal cancer

结直肠癌 甲基化 DNA甲基化 比例危险模型 CpG站点 肿瘤科 医学 生存分析 内科学 癌症 基因 生物 基因表达 遗传学
作者
Donghai Li,Xiaohui Du,Ming Liu,Rui Zhang
出处
期刊:Cancer genetics [Elsevier]
卷期号:252-253: 80-86 被引量:6
标识
DOI:10.1016/j.cancergen.2020.12.009
摘要

Background Colorectal cancer (CRC) is a common malignant tumor of digestive tract which has high incidence and mortality rates. Accurate prognosis prediction of CRC patients is pivotal to reduce the mortality and disease burden. Methods In this study, we comprehensively analyzed the gene expression and methylation data of CRC samples from The Cancer Genome Atlas (TCGA). Differential expression genes (DEGs) and methylation CpGs (DMCs) in tumor tissues compared with adjacent normal tissues of CRC were first identified. Functional enrichment analysis of DEGs and DMCs was performed by Database for Annotation, Visualization and Integrated Discovery (DAVID). Spearman correlation analysis was used to screen DMCs that negatively correlated with gene expressions which were subsequently applied to sure independence screening (SIS) along with stepwise regression for screening optimal CpGs for CRC prognosis prediction model construction by Cox regression analysis. Results We identified a total of 1774 DEGs (663 upregulated and 1111 downregulated) and 11,975 DMCs (7385 hypermethylated and 4590 hypomethylated) in CRC tumor samples compared with adjacent normal samples. The hypermethylated loci were mainly located on CpG island, while the hypomethylated loci were mainly located on N-shore. Spearman correlation analysis screened 321 DMCs that negatively correlated with expressions of their annotated genes. Cox regression model consist of 10 CpGs was finally established which could effectively stratified CRC patients that exhibited significantly different overall survival probability independent of age, gender, and pathological staging. Conclusion We established a prognosis prediction model based on 10 methylation sites, which could evaluate the prognosis of CRC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张大大发布了新的文献求助10
1秒前
1秒前
小趴菜发布了新的文献求助10
2秒前
千陽完成签到 ,获得积分10
2秒前
哆啦B梦完成签到 ,获得积分10
2秒前
浮游应助plant采纳,获得10
3秒前
阿玺发布了新的文献求助10
3秒前
ln完成签到 ,获得积分10
5秒前
温柔的秋发布了新的文献求助10
6秒前
Passer发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
陈某某发布了新的文献求助10
8秒前
8秒前
9秒前
论高等数学的无用性完成签到 ,获得积分10
9秒前
高贵紫丝发布了新的文献求助10
10秒前
Alizmee发布了新的文献求助10
10秒前
随便叫个小白吧完成签到,获得积分20
11秒前
11秒前
12秒前
麻瓜发布了新的文献求助10
12秒前
14秒前
老福贵儿发布了新的文献求助10
14秒前
15秒前
15秒前
林强完成签到,获得积分10
15秒前
SX发布了新的文献求助10
15秒前
无花果应助不知名选手采纳,获得10
16秒前
小连发布了新的文献求助10
17秒前
17秒前
明理溪流发布了新的文献求助10
18秒前
18秒前
zhang1完成签到,获得积分20
18秒前
莫默完成签到,获得积分10
19秒前
科研渣渣完成签到,获得积分10
19秒前
皮老八发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
纯情的白开水完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474258
求助须知:如何正确求助?哪些是违规求助? 4576037
关于积分的说明 14356246
捐赠科研通 4503903
什么是DOI,文献DOI怎么找? 2467852
邀请新用户注册赠送积分活动 1455603
关于科研通互助平台的介绍 1429618