A 10-gene-methylation-based signature for prognosis prediction of colorectal cancer

结直肠癌 甲基化 DNA甲基化 比例危险模型 CpG站点 肿瘤科 医学 生存分析 内科学 癌症 基因 生物 基因表达 遗传学
作者
Donghai Li,Xiaohui Du,Ming Liu,Rui Zhang
出处
期刊:Cancer genetics [Elsevier BV]
卷期号:252-253: 80-86 被引量:6
标识
DOI:10.1016/j.cancergen.2020.12.009
摘要

Background Colorectal cancer (CRC) is a common malignant tumor of digestive tract which has high incidence and mortality rates. Accurate prognosis prediction of CRC patients is pivotal to reduce the mortality and disease burden. Methods In this study, we comprehensively analyzed the gene expression and methylation data of CRC samples from The Cancer Genome Atlas (TCGA). Differential expression genes (DEGs) and methylation CpGs (DMCs) in tumor tissues compared with adjacent normal tissues of CRC were first identified. Functional enrichment analysis of DEGs and DMCs was performed by Database for Annotation, Visualization and Integrated Discovery (DAVID). Spearman correlation analysis was used to screen DMCs that negatively correlated with gene expressions which were subsequently applied to sure independence screening (SIS) along with stepwise regression for screening optimal CpGs for CRC prognosis prediction model construction by Cox regression analysis. Results We identified a total of 1774 DEGs (663 upregulated and 1111 downregulated) and 11,975 DMCs (7385 hypermethylated and 4590 hypomethylated) in CRC tumor samples compared with adjacent normal samples. The hypermethylated loci were mainly located on CpG island, while the hypomethylated loci were mainly located on N-shore. Spearman correlation analysis screened 321 DMCs that negatively correlated with expressions of their annotated genes. Cox regression model consist of 10 CpGs was finally established which could effectively stratified CRC patients that exhibited significantly different overall survival probability independent of age, gender, and pathological staging. Conclusion We established a prognosis prediction model based on 10 methylation sites, which could evaluate the prognosis of CRC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
茶柠应助夏夏子采纳,获得10
1秒前
秦川发布了新的文献求助10
2秒前
舒心完成签到,获得积分20
2秒前
FashionBoy应助Dr采纳,获得10
2秒前
gcvyxcc完成签到,获得积分20
2秒前
李佳萌发布了新的文献求助10
2秒前
2秒前
星辰大海应助lijun采纳,获得10
3秒前
3秒前
不呐呐发布了新的文献求助10
3秒前
sennialiu完成签到,获得积分10
3秒前
3秒前
打打应助獭祭鱼采纳,获得10
3秒前
4秒前
federish完成签到 ,获得积分10
4秒前
阿源完成签到,获得积分10
4秒前
origin完成签到,获得积分10
4秒前
lu完成签到 ,获得积分10
4秒前
称心问枫完成签到,获得积分10
5秒前
小L发布了新的文献求助10
5秒前
这就是你发布了新的文献求助10
5秒前
Jasper应助小伙子采纳,获得10
6秒前
nkmenghan发布了新的文献求助10
6秒前
dbsjdjb发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助30
7秒前
wxyshare应助波奇朵朵采纳,获得10
7秒前
科研通AI5应助派大星采纳,获得10
8秒前
阿然发布了新的文献求助10
8秒前
Owen应助奶盖采纳,获得10
8秒前
乐观芸遥完成签到,获得积分10
9秒前
谨慎青亦完成签到,获得积分10
10秒前
10秒前
香蕉觅云应助Melody采纳,获得10
10秒前
汉堡包应助素笺生花采纳,获得10
10秒前
马冬梅发布了新的文献求助10
10秒前
肖sir666发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071427
求助须知:如何正确求助?哪些是违规求助? 4292111
关于积分的说明 13373408
捐赠科研通 4112841
什么是DOI,文献DOI怎么找? 2252088
邀请新用户注册赠送积分活动 1257155
关于科研通互助平台的介绍 1189893