A 10-gene-methylation-based signature for prognosis prediction of colorectal cancer

结直肠癌 甲基化 DNA甲基化 比例危险模型 CpG站点 肿瘤科 医学 生存分析 内科学 癌症 基因 生物 基因表达 遗传学
作者
Donghai Li,Xiaohui Du,Ming Liu,Rui Zhang
出处
期刊:Cancer genetics [Elsevier]
卷期号:252-253: 80-86 被引量:6
标识
DOI:10.1016/j.cancergen.2020.12.009
摘要

Background Colorectal cancer (CRC) is a common malignant tumor of digestive tract which has high incidence and mortality rates. Accurate prognosis prediction of CRC patients is pivotal to reduce the mortality and disease burden. Methods In this study, we comprehensively analyzed the gene expression and methylation data of CRC samples from The Cancer Genome Atlas (TCGA). Differential expression genes (DEGs) and methylation CpGs (DMCs) in tumor tissues compared with adjacent normal tissues of CRC were first identified. Functional enrichment analysis of DEGs and DMCs was performed by Database for Annotation, Visualization and Integrated Discovery (DAVID). Spearman correlation analysis was used to screen DMCs that negatively correlated with gene expressions which were subsequently applied to sure independence screening (SIS) along with stepwise regression for screening optimal CpGs for CRC prognosis prediction model construction by Cox regression analysis. Results We identified a total of 1774 DEGs (663 upregulated and 1111 downregulated) and 11,975 DMCs (7385 hypermethylated and 4590 hypomethylated) in CRC tumor samples compared with adjacent normal samples. The hypermethylated loci were mainly located on CpG island, while the hypomethylated loci were mainly located on N-shore. Spearman correlation analysis screened 321 DMCs that negatively correlated with expressions of their annotated genes. Cox regression model consist of 10 CpGs was finally established which could effectively stratified CRC patients that exhibited significantly different overall survival probability independent of age, gender, and pathological staging. Conclusion We established a prognosis prediction model based on 10 methylation sites, which could evaluate the prognosis of CRC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助HuiYmao采纳,获得10
刚刚
坚定芯完成签到 ,获得积分10
刚刚
冯珂发布了新的文献求助10
1秒前
田様应助77采纳,获得10
1秒前
yn完成签到,获得积分10
1秒前
小辰完成签到,获得积分10
1秒前
贤惠的数据线完成签到,获得积分10
1秒前
独特秋双发布了新的文献求助10
2秒前
2秒前
wang完成签到,获得积分10
3秒前
生物科研小白完成签到 ,获得积分10
3秒前
小蘑菇应助Xavier采纳,获得30
3秒前
5秒前
温柔樱桃发布了新的文献求助10
5秒前
6秒前
6秒前
坚强的孤丹完成签到,获得积分20
6秒前
oue发布了新的文献求助10
6秒前
7秒前
传奇3应助lu采纳,获得10
8秒前
嘿嘿完成签到,获得积分10
9秒前
FashionBoy应助小壮采纳,获得10
9秒前
9秒前
shadow完成签到,获得积分10
9秒前
在水一方应助属下存在感采纳,获得10
9秒前
明亮夏旋完成签到,获得积分10
10秒前
10秒前
msw发布了新的文献求助10
10秒前
Betty发布了新的文献求助10
11秒前
残剑月发布了新的文献求助30
11秒前
lj完成签到,获得积分10
12秒前
松尐发布了新的文献求助10
12秒前
烂漫铃铛完成签到,获得积分10
12秒前
猪猪hero应助沉静白翠采纳,获得10
12秒前
viho发布了新的文献求助10
13秒前
花根发布了新的文献求助10
13秒前
有什么大不了的呢完成签到,获得积分10
13秒前
sober发布了新的文献求助20
14秒前
缓慢的秋莲完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836