Estimation of continuous valence and arousal levels from faces in naturalistic conditions

唤醒 悲伤 计算机科学 价(化学) 幸福 认知心理学 愤怒 面部表情 情感计算 情感(语言学) 范畴变量 人工智能 心理学 人机交互 机器学习 社会心理学 物理 沟通 量子力学
作者
Antoine Toisoul,Jean Kossaifi,Adrian Bulat,Georgios Tzimiropoulos,Maja Pantić
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:3 (1): 42-50 被引量:148
标识
DOI:10.1038/s42256-020-00280-0
摘要

Facial affect analysis aims to create new types of human–computer interactions by enabling computers to better understand a person’s emotional state in order to provide ad hoc help and interactions. Since discrete emotional classes (such as anger, happiness, sadness and so on) are not representative of the full spectrum of emotions displayed by humans on a daily basis, psychologists typically rely on dimensional measures, namely valence (how positive the emotional display is) and arousal (how calming or exciting the emotional display looks like). However, while estimating these values from a face is natural for humans, it is extremely difficult for computer-based systems and automatic estimation of valence and arousal in naturalistic conditions is an open problem. Additionally, the subjectivity of these measures makes it hard to obtain good quality data. Here we introduce a novel deep neural network architecture to analyse facial affect in naturalistic conditions with a high level of accuracy. The proposed network integrates face alignment and jointly estimates both categorical and continuous emotions in a single pass, making it suitable for real-time applications. We test our method on three challenging datasets collected in naturalistic conditions and show that our approach outperforms all previous methods. We also discuss caveats regarding the use of this tool, and ethical aspects that must be considered in its application. The annotation of the visual signs of emotions can be important for psychological studies and even human–computer interactions. Instead of only ascribing discrete emotions, Toisoul and colleagues use a single neural network that predicts emotional labels on a spectrum of valence and arousal without separate face-alignment steps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
葡萄完成签到 ,获得积分10
刚刚
更胜一筹完成签到,获得积分20
1秒前
1秒前
XU发布了新的文献求助10
1秒前
min发布了新的文献求助10
1秒前
ww发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
慕青应助王KKK采纳,获得10
3秒前
3秒前
kkk发布了新的文献求助10
3秒前
更胜一筹发布了新的文献求助10
3秒前
11发布了新的文献求助40
3秒前
Tengami发布了新的文献求助10
3秒前
ziyue发布了新的文献求助10
4秒前
哈哈哈哈哈哈完成签到,获得积分10
4秒前
天天下雨发布了新的文献求助10
4秒前
大个应助wanghuiyanyx采纳,获得10
5秒前
5秒前
5秒前
GEMINI完成签到,获得积分10
5秒前
靓丽衫完成签到 ,获得积分10
5秒前
XU完成签到,获得积分10
6秒前
chen完成签到,获得积分10
6秒前
CipherSage应助叶液采纳,获得10
7秒前
宋德宇发布了新的文献求助20
7秒前
7秒前
8秒前
8秒前
yyf完成签到,获得积分10
8秒前
我是老大应助GEMINI采纳,获得10
9秒前
王蕊发布了新的文献求助10
9秒前
guyanlong完成签到,获得积分10
9秒前
joleisalau发布了新的文献求助10
9秒前
天天快乐应助WY采纳,获得10
9秒前
buno应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836