Estimation of continuous valence and arousal levels from faces in naturalistic conditions

唤醒 悲伤 计算机科学 价(化学) 幸福 认知心理学 愤怒 面部表情 情感计算 情感(语言学) 范畴变量 人工智能 心理学 人机交互 机器学习 社会心理学 物理 沟通 量子力学
作者
Antoine Toisoul,Jean Kossaifi,Adrian Bulat,Georgios Tzimiropoulos,Maja Pantić
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (1): 42-50 被引量:148
标识
DOI:10.1038/s42256-020-00280-0
摘要

Facial affect analysis aims to create new types of human–computer interactions by enabling computers to better understand a person’s emotional state in order to provide ad hoc help and interactions. Since discrete emotional classes (such as anger, happiness, sadness and so on) are not representative of the full spectrum of emotions displayed by humans on a daily basis, psychologists typically rely on dimensional measures, namely valence (how positive the emotional display is) and arousal (how calming or exciting the emotional display looks like). However, while estimating these values from a face is natural for humans, it is extremely difficult for computer-based systems and automatic estimation of valence and arousal in naturalistic conditions is an open problem. Additionally, the subjectivity of these measures makes it hard to obtain good quality data. Here we introduce a novel deep neural network architecture to analyse facial affect in naturalistic conditions with a high level of accuracy. The proposed network integrates face alignment and jointly estimates both categorical and continuous emotions in a single pass, making it suitable for real-time applications. We test our method on three challenging datasets collected in naturalistic conditions and show that our approach outperforms all previous methods. We also discuss caveats regarding the use of this tool, and ethical aspects that must be considered in its application. The annotation of the visual signs of emotions can be important for psychological studies and even human–computer interactions. Instead of only ascribing discrete emotions, Toisoul and colleagues use a single neural network that predicts emotional labels on a spectrum of valence and arousal without separate face-alignment steps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好完成签到,获得积分10
3秒前
3秒前
ahaaa完成签到,获得积分10
3秒前
漂亮采波发布了新的文献求助10
4秒前
277发布了新的文献求助20
5秒前
ahaaa发布了新的文献求助10
6秒前
俏皮连虎完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
9秒前
10秒前
研究生吗喽完成签到,获得积分10
11秒前
机灵白桃发布了新的文献求助10
12秒前
丘比特应助WD采纳,获得10
12秒前
床头经济学完成签到,获得积分10
12秒前
tanglu发布了新的文献求助10
13秒前
Gsyin完成签到,获得积分10
13秒前
14秒前
sohee发布了新的文献求助10
14秒前
Amuro完成签到,获得积分10
15秒前
15秒前
今后应助淡淡的忆彤采纳,获得10
15秒前
Allon发布了新的文献求助10
15秒前
络绎发布了新的文献求助10
16秒前
17秒前
默默发布了新的文献求助10
19秒前
夏天完成签到,获得积分10
20秒前
qqqqqqqqqqq发布了新的文献求助10
20秒前
芝麻糊应助ANXU采纳,获得10
20秒前
21秒前
西柚完成签到 ,获得积分10
22秒前
笨笨藏鸟完成签到,获得积分20
23秒前
xiaohanzai88发布了新的文献求助10
25秒前
星辰大海应助葫芦娃采纳,获得10
26秒前
辛勤的芾发布了新的文献求助10
26秒前
追寻的安南完成签到 ,获得积分10
26秒前
漂亮采波完成签到,获得积分10
26秒前
26秒前
顾矜应助立冏商采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992393
求助须知:如何正确求助?哪些是违规求助? 3533397
关于积分的说明 11262186
捐赠科研通 3272927
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882792
科研通“疑难数据库(出版商)”最低求助积分说明 809474