Direct Bonding of GaAs and Diamond for High Power Device Applications

钻石 材料科学 退火(玻璃) 光电子学 热导率 复合材料
作者
Jianbo Liang,Yuji Nakamura,Yutaka Ohno,Yasuo Shimizu,Tianzhuo Zhan,Takanobu Watanabe,Naoto Kamiuchi,Y. Nagai,Naoteru Shigekawa
出处
期刊:Meeting abstracts
标识
DOI:10.1149/ma2020-02221634mtgabs
摘要

Direct bonding of GaAs and diamond was successfully achieved by surface activated bonding (SAB) method at room temperature. The structures of GaAs/diamond interface before and after annealing at 400 ℃ were investigated by transmission electron microscope (TEM). A 3-nm-thick crystal defect layer was formed at the bonding interface, the change in the crystal defect layer thickness was not observed after annealing. There were no nanovoids and micro-cracks observed at the interface with annealing at temperature 400 ℃. These results indicated that the GaAs/diamond interface has high thermal stability and can withstand the temperature rise of power devices during operating.GaAs-based power devices have excellent electron transport properties and make it suitable for high frequency operation at high frequency. The output power and the lifetime of GaAs devices are largely degraded by the temperature rise of the active region during operating. The thermal conductivity of GaAs is very small, so that the generated heat by self-heating cannot be sufficiently dissipated through the substrate. Diamond has the highest thermal conductivity among materials and is an ideal material to suppress the temperature rise of the devices. The integration of the GaAs-based devices and diamond will be a more promising approach for improving the heat dissipation ability of the devices. However, since there is a large mismatch between the thermal expansion coefficients and lattice constants of GaAs and diamond, the direct growth of GaAs on diamond is quite difficult and vice versa. We have achieved the direct bonding of diamond and Si at room temperature using surface activated bonding (SAB) method and obtained the excellent thermal stability bonding interface.1-3 In this study, we examine the structures of the diamond/GaAs bonding interface and effects of thermal annealing on the interfacial structure of the interface by transmission electron microscopy (TEM).GaAs epitaxial layer grown on GaAs substrate was bonded to diamond by SAB method at room temperature. GaAs epitaxial substrate was composed of a 200 nm thick GaAs and a 100 nm thick InGaP layers grown on GaAs. After bonding, the GaAs substrate and InGaP layer were removed by mechanical polishing and selective wet etching to obtain 200 nm thick GaAs layer bonded to diamond substrates. The structures of the GaAs/diamond bonding interface were investigated by TEM observation. The TEM samples were fabricated by using a focused ion beam (FIB) technique.The cross-sectional TEM images of the GaAs/diamond bonding interface without and with annealing at 400°C for 5 min are shown in Fig 1(a) and 1(b), respectively. A crystal defect layer with a thickness of about 3 nm was observed in the as-bonded interface. The thickness of the crystal defect layer did not change, but no voids or cracks were observed at the bonding interface after annealing. These results indicate that the bonding interface of diamond and GaAs has an excellent thermal stability, which is extremely qualified for the heat dissipation of the devices.Acknowledgements This work was partly supported by Hirose International Scholarship Foundation. The fabrication of the TEM samples and part of the TEM observations were respectively performed at The Oarai Center and at the Laboratory of Alpha-Ray Emitters in IMR under the Inter-University Cooperative Research in IMR of Tohoku University (NO. 18M0045 and 19M0037).References Liang, S. Masuya, M. Kasu, N. Shigekawa, Appl. Phys. Lett. 2017, 110, No.111603.Liang, S. Masuya, S. Kim, T. Oishi, M. Kasu, N. Shigekawa, Appl. Phys. Express 2019, 12, No. 016501.Liang, Y. Zhou, S. Masuya, F. Gucmann, M. Singh, J. Pomeroy, S. Kim, M. Kuball, M. Kasu, N. Shigekawa, Diam. Relat. Mater. 2019, 93, 187 – 192.Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
114514发布了新的文献求助10
刚刚
Jasper应助伯言采纳,获得10
刚刚
孙燕应助遥不可及采纳,获得10
刚刚
萌新完成签到 ,获得积分10
1秒前
gbfgbdfbd发布了新的文献求助10
4秒前
Joey完成签到,获得积分10
4秒前
英吉利25发布了新的文献求助10
4秒前
小蘑菇应助caicai采纳,获得10
4秒前
wanwan应助顺顺采纳,获得10
5秒前
5秒前
宁霸完成签到,获得积分0
5秒前
Owen应助欢呼的丁真采纳,获得10
7秒前
momomo应助mpenny77采纳,获得10
7秒前
N_wh完成签到,获得积分10
7秒前
pluto应助huangsi采纳,获得10
9秒前
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
kecheng应助科研通管家采纳,获得10
10秒前
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
甜美无剑应助科研通管家采纳,获得50
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
111111完成签到,获得积分10
12秒前
bb完成签到,获得积分10
13秒前
13秒前
一叶知秋完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425