Generalized stability criterion for exploiting optimized mechanical properties by a general correlation between phase transformations and plastic deformations

材料科学 动能 合金 硬化(计算) 微观结构 热力学 应变硬化指数 转化(遗传学) 产量(工程) 可塑性 变形(气象学) 相(物质) 复合材料 理论(学习稳定性) 计算机科学 经典力学 物理 生物化学 化学 机器学习 基因 图层(电子) 量子力学
作者
Linke Huang,Weitong Lin,Yubin Zhang,Dan Feng,Yujiao Li,Xiang Chen,Kai Niu,Feng Liu
出处
期刊:Acta Materialia [Elsevier]
卷期号:201: 167-181 被引量:49
标识
DOI:10.1016/j.actamat.2020.10.005
摘要

Designing structured materials with optimized mechanical properties generally focuses on engineering microstructures, which are closely determined by the processing routes, such as phase transformations. However, the direct connection between phase transformations and mechanical properties remains largely unexplored. Here, we propose a new concept of generalized stability (GS) to correlate phase transformations with plastic deformations in terms of the trade-off relationship that exists between thermodynamics and kinetics. We then suggest that, to achieve structured materials with excellent strength–plasticity combinations, phase transformations and/or plastic deformations with high GS, thermodynamic driving force (ΔG), and kinetic activation energy (Q), are highly expected. We verify the GS concept against a phase transformation-modulated nanostructured Fe alloy, for which an ultrahigh yield strength of 2.61 GPa and an ultimate compressive strength of 3.32 GPa while having a total strain to failure of 35% are achieved via multiple strengthening and hardening mechanisms. A theoretical analysis, in combination with microstructural characterization, indicates that the desired thermo-kinetic parameter triplets (i.e., high GS-high ΔG-high Q) could be inherited from the phase transformation to the plastic deformation, which ultimately yields good mechanical performance. The proposed concept can be regarded as the first theoretical criterion or a general rule that correlates phase transformation with plastic deformation, and can assist in the rapid selection of phase transformations to facilitate superior mechanical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琴生完成签到,获得积分10
1秒前
1秒前
1秒前
Mtoc完成签到 ,获得积分10
1秒前
1秒前
跳跃老五完成签到 ,获得积分10
1秒前
1秒前
浪迹天涯完成签到,获得积分10
2秒前
包容的剑发布了新的文献求助10
2秒前
斯文的茹嫣完成签到,获得积分10
2秒前
义气笑容完成签到,获得积分10
2秒前
yufeng完成签到 ,获得积分10
3秒前
3秒前
Jenny完成签到,获得积分10
3秒前
3秒前
科研小小小白完成签到,获得积分10
4秒前
4秒前
小橙子完成签到 ,获得积分10
5秒前
6秒前
6秒前
福娃发布了新的文献求助10
6秒前
7秒前
达斯维完成签到,获得积分10
7秒前
浪迹天涯发布了新的文献求助10
7秒前
今后应助杜嘟嘟采纳,获得30
7秒前
8秒前
8秒前
清圆527完成签到,获得积分10
8秒前
JamesPei应助Zhong采纳,获得10
8秒前
9秒前
9秒前
10秒前
10秒前
10秒前
Emma完成签到 ,获得积分10
11秒前
11秒前
11秒前
清新的问枫完成签到,获得积分10
12秒前
12秒前
在水一方应助大方小白采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740