表观基因组
生物
表观遗传学
表观遗传学
染色质
神经退行性变
组蛋白
遗传学
转录组
DNA甲基化
计算生物学
转录因子
疾病
基因
基因表达
医学
病理
作者
Raffaella Nativio,Yemin Lan,Greg Donahue,Simone Sidoli,Amit Berson,Ananth Srinivasan,Oksana Shcherbakova,Alexandre Amlie‐Wolf,Ji Nie,Xiaolong Cui,Chuan He,Li-San Wang,Benjamin A. García,John Q. Trojanowski,Nancy M. Bonini,Shelley L. Berger
出处
期刊:Nature Genetics
[Springer Nature]
日期:2020-09-28
卷期号:52 (10): 1024-1035
被引量:246
标识
DOI:10.1038/s41588-020-0696-0
摘要
Protein aggregation is the hallmark of neurodegeneration, but the molecular mechanisms underlying late-onset Alzheimer's disease (AD) are unclear. Here we integrated transcriptomic, proteomic and epigenomic analyses of postmortem human brains to identify molecular pathways involved in AD. RNA sequencing analysis revealed upregulation of transcription- and chromatin-related genes, including the histone acetyltransferases for H3K27ac and H3K9ac. An unbiased proteomic screening singled out H3K27ac and H3K9ac as the main enrichments specific to AD. In turn, epigenomic profiling revealed gains in the histone H3 modifications H3K27ac and H3K9ac linked to transcription, chromatin and disease pathways in AD. Increasing genome-wide H3K27ac and H3K9ac in a fly model of AD exacerbated amyloid-β42-driven neurodegeneration. Together, these findings suggest that AD involves a reconfiguration of the epigenome, wherein H3K27ac and H3K9ac affect disease pathways by dysregulating transcription- and chromatin-gene feedback loops. The identification of this process highlights potential epigenetic strategies for early-stage disease treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI