Feedforward and Recurrent Neural Network-Based Transfer Learning for Nonlinear Equalization in Short-Reach Optical Links

循环神经网络 计算机科学 前馈神经网络 前馈 人工神经网络 均衡(音频) 频道(广播) 非线性系统 人工智能 电子工程 电信 工程类 控制工程 物理 量子力学
作者
Zhaopeng Xu,Chuanbowen Sun,Tonghui Ji,Jonathan H. Manton,William Shieh
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 475-480 被引量:35
标识
DOI:10.1109/jlt.2020.3031363
摘要

Neural network (NN)-based nonlinear equalizers have been shown effective for various types of short-reach direct detection systems. However, they work best for a certain channel condition and need to be trained again when the channel environment is changed, which hinders the efficient deployment of future optical switched data center networks. In this article, we propose transfer learning (TL)-aided feedforward neural networks (FNN) and recurrent neural networks (RNN) for nonlinear equalization in short-reach direct detection optical links, which enables a fast transition to new equalizers when the channel condition is changed. A 50-Gb/s 20-km pulse amplitude modulation (PAM)-4 optical link is experimentally demonstrated as the target system, and links of varying bit-rates and fiber lengths are selected as the source system. Experimental results show that TL could help reduce the number of epochs and training symbols of FNNs/RNNs required for nonlinear equalization in the target system, taking advantage of FNNs/RNNs trained for source systems. A reduction of 90%/87.5% in epochs and 62.5%/53.8% in training symbols is achieved with FNNs/RNNs transferred from the most similar source system. We also find that FNNs can be transferred to their corresponding RNNs for equalization in the target system, while TL from RNNs to FNNs cannot work properly. TL enables a fast transition between different NN-based equalizers, which is critical for future optical switched data center networks, where the optical links need to be dynamically reconfigured.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fwx1997发布了新的文献求助10
刚刚
可靠的寒风完成签到,获得积分10
刚刚
Jasper应助西瓜采纳,获得10
刚刚
1秒前
2秒前
2秒前
2秒前
科研通AI6应助三色采纳,获得10
2秒前
3秒前
3秒前
3秒前
隐形曼青应助哈哈哈采纳,获得10
3秒前
4秒前
sdysdbd完成签到 ,获得积分10
5秒前
共享精神应助wsqg123采纳,获得10
5秒前
5秒前
5秒前
芒狗发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
铁观音发布了新的文献求助10
6秒前
超级李包包关注了科研通微信公众号
6秒前
上官若男应助鲤鱼酸奶采纳,获得10
7秒前
善学以致用应助小巧冷菱采纳,获得50
7秒前
8秒前
8秒前
vane发布了新的文献求助10
8秒前
刘明升发布了新的文献求助10
8秒前
芭温行由发布了新的文献求助10
9秒前
10秒前
活泼学生完成签到,获得积分10
10秒前
安平发布了新的文献求助10
10秒前
思源应助君无邪采纳,获得10
10秒前
这瓜不卖发布了新的文献求助10
10秒前
11秒前
堇瓜完成签到 ,获得积分10
11秒前
11秒前
Vegetable_Dog发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906