Feedforward and Recurrent Neural Network-Based Transfer Learning for Nonlinear Equalization in Short-Reach Optical Links

循环神经网络 计算机科学 前馈神经网络 前馈 人工神经网络 均衡(音频) 频道(广播) 非线性系统 人工智能 电子工程 电信 工程类 控制工程 物理 量子力学
作者
Zhaopeng Xu,Chuanbowen Sun,Tonghui Ji,Jonathan H. Manton,William Shieh
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 475-480 被引量:35
标识
DOI:10.1109/jlt.2020.3031363
摘要

Neural network (NN)-based nonlinear equalizers have been shown effective for various types of short-reach direct detection systems. However, they work best for a certain channel condition and need to be trained again when the channel environment is changed, which hinders the efficient deployment of future optical switched data center networks. In this article, we propose transfer learning (TL)-aided feedforward neural networks (FNN) and recurrent neural networks (RNN) for nonlinear equalization in short-reach direct detection optical links, which enables a fast transition to new equalizers when the channel condition is changed. A 50-Gb/s 20-km pulse amplitude modulation (PAM)-4 optical link is experimentally demonstrated as the target system, and links of varying bit-rates and fiber lengths are selected as the source system. Experimental results show that TL could help reduce the number of epochs and training symbols of FNNs/RNNs required for nonlinear equalization in the target system, taking advantage of FNNs/RNNs trained for source systems. A reduction of 90%/87.5% in epochs and 62.5%/53.8% in training symbols is achieved with FNNs/RNNs transferred from the most similar source system. We also find that FNNs can be transferred to their corresponding RNNs for equalization in the target system, while TL from RNNs to FNNs cannot work properly. TL enables a fast transition between different NN-based equalizers, which is critical for future optical switched data center networks, where the optical links need to be dynamically reconfigured.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
松鼠爱学习完成签到 ,获得积分10
刚刚
1秒前
丘比特应助明理的凌旋采纳,获得10
2秒前
你管得着吗完成签到,获得积分20
2秒前
1111发布了新的文献求助10
3秒前
蓝蓝关注了科研通微信公众号
3秒前
4秒前
5秒前
MM发布了新的文献求助10
6秒前
srics发布了新的文献求助10
7秒前
7秒前
8秒前
Milou发布了新的文献求助10
10秒前
沈怡弘发布了新的文献求助10
10秒前
科研通AI5应助超级盼海采纳,获得10
11秒前
sunlanglang完成签到,获得积分20
12秒前
SilvanYang应助科研通管家采纳,获得30
12秒前
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
Sun发布了新的文献求助10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
12秒前
英姑应助科研通管家采纳,获得30
13秒前
orixero应助科研通管家采纳,获得10
13秒前
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
13秒前
李健应助科研通管家采纳,获得10
13秒前
13秒前
直率向薇发布了新的文献求助10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
13秒前
memo应助科研通管家采纳,获得200
13秒前
慕青应助科研通管家采纳,获得10
14秒前
zho应助科研通管家采纳,获得10
14秒前
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
xiaofu发布了新的文献求助50
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214