Feedforward and Recurrent Neural Network-Based Transfer Learning for Nonlinear Equalization in Short-Reach Optical Links

循环神经网络 计算机科学 前馈神经网络 前馈 人工神经网络 均衡(音频) 频道(广播) 非线性系统 人工智能 电子工程 电信 工程类 控制工程 物理 量子力学
作者
Zhaopeng Xu,Chuanbowen Sun,Tonghui Ji,Jonathan H. Manton,William Shieh
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 475-480 被引量:35
标识
DOI:10.1109/jlt.2020.3031363
摘要

Neural network (NN)-based nonlinear equalizers have been shown effective for various types of short-reach direct detection systems. However, they work best for a certain channel condition and need to be trained again when the channel environment is changed, which hinders the efficient deployment of future optical switched data center networks. In this article, we propose transfer learning (TL)-aided feedforward neural networks (FNN) and recurrent neural networks (RNN) for nonlinear equalization in short-reach direct detection optical links, which enables a fast transition to new equalizers when the channel condition is changed. A 50-Gb/s 20-km pulse amplitude modulation (PAM)-4 optical link is experimentally demonstrated as the target system, and links of varying bit-rates and fiber lengths are selected as the source system. Experimental results show that TL could help reduce the number of epochs and training symbols of FNNs/RNNs required for nonlinear equalization in the target system, taking advantage of FNNs/RNNs trained for source systems. A reduction of 90%/87.5% in epochs and 62.5%/53.8% in training symbols is achieved with FNNs/RNNs transferred from the most similar source system. We also find that FNNs can be transferred to their corresponding RNNs for equalization in the target system, while TL from RNNs to FNNs cannot work properly. TL enables a fast transition between different NN-based equalizers, which is critical for future optical switched data center networks, where the optical links need to be dynamically reconfigured.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ya完成签到 ,获得积分10
3秒前
活泼的寒安完成签到 ,获得积分10
3秒前
小七完成签到,获得积分10
5秒前
uniquelin完成签到 ,获得积分10
6秒前
8秒前
10秒前
喵总发布了新的文献求助10
12秒前
wanci应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得30
13秒前
cara应助科研通管家采纳,获得10
13秒前
杳鸢应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得30
13秒前
杳鸢应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得30
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
16秒前
共享精神应助喵总采纳,获得10
16秒前
ding应助123456采纳,获得10
17秒前
Hahahahahahah完成签到,获得积分10
19秒前
黄可以完成签到,获得积分10
20秒前
hamburger完成签到,获得积分10
21秒前
甜蜜匕发布了新的文献求助10
21秒前
wanci应助撒大苏打采纳,获得10
22秒前
drwang120完成签到 ,获得积分10
23秒前
24秒前
朴实寻琴完成签到 ,获得积分10
25秒前
26秒前
Nuyoah完成签到,获得积分10
28秒前
123456发布了新的文献求助10
29秒前
33秒前
科研通AI2S应助Nuyoah采纳,获得10
38秒前
撒大苏打发布了新的文献求助10
40秒前
reck完成签到,获得积分10
42秒前
xx发布了新的文献求助30
43秒前
Merak完成签到 ,获得积分10
43秒前
撒大苏打完成签到,获得积分10
44秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267613
求助须知:如何正确求助?哪些是违规求助? 2907080
关于积分的说明 8340534
捐赠科研通 2577765
什么是DOI,文献DOI怎么找? 1401218
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633972