Ultrasound-Based Radiomics Analysis for Preoperatively Predicting Different Histopathological Subtypes of Primary Liver Cancer.

无线电技术 列线图 癌症 内科学 肝细胞癌 病理 组织病理学 肝癌 转移 活检
作者
Yu-Ting Peng,Peng Lin,Linyong Wu,Da Wan,Yujia Zhao,Li Liang,Xiaoyu Ma,Hui Qin,Yichen Liu,Xin Li,Xin-Rong Wang,Yun He,Hong Yang
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:10: 1646- 被引量:9
标识
DOI:10.3389/fonc.2020.01646
摘要

Background Preoperative identification of hepatocellular carcinoma (HCC), combined hepatocellular-cholangiocarcinoma (cHCC-ICC), and intrahepatic cholangiocarcinoma (ICC) is essential for treatment decision making. We aimed to use ultrasound-based radiomics analysis to non-invasively distinguish histopathological subtypes of primary liver cancer (PLC) before surgery. Methods We retrospectively analyzed ultrasound images of 668 PLC patients, comprising 531 HCC patients, 48 cHCC-ICC patients, and 89 ICC patients. The boundary of a tumor was manually determined on the largest imaging slice of the ultrasound medicine image by ITK-SNAP software (version 3.8.0), and then, the high-throughput radiomics features were extracted from the obtained region of interest (ROI) of the tumor. The combination of different dimension-reduction technologies and machine learning approaches was used to identify important features and develop the moderate radiomics model. The comprehensive ability of the radiomics model can be evaluated by the area under the receiver operating characteristic curve (AUC). Results After digitally processing tumor ultrasound images, 5,234 high-throughput radiomics features were obtained. We used the Spearman + least absolute shrinkage and selection operator (LASSO) regression method for feature selection and logistics regression for modeling to develop the HCC-vs-non-HCC radiomics model (composed of 16 features). The Spearman + statistical test + random forest methods were used for feature selection, and logistics regression was applied for modeling to develop the ICC-vs-cHCC-ICC radiomics model (composed of 19 features). The overall performance of the radiomics model in identifying different histopathological types of PLC was moderate, with AUC values of 0.854 (training cohort) and 0.775 (test cohort) in the HCC-vs-non-HCC radiomics model and 0.920 (training cohort) and 0.728 (test cohort) in the ICC-vs-cHCC-ICC radiomics model. Conclusion Ultrasound-based radiomics models can help distinguish histopathological subtypes of PLC and provide effective clinical decision making for the accurate diagnosis and treatment of PLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助微冷潇一采纳,获得10
刚刚
Swin完成签到,获得积分10
刚刚
刚刚
学术菜鸡发布了新的文献求助10
刚刚
1秒前
科研通AI5应助lancekkk采纳,获得10
1秒前
1秒前
李十完成签到,获得积分10
1秒前
华仔应助贪玩的初雪采纳,获得10
1秒前
贪玩的可乐完成签到,获得积分10
2秒前
CipherSage应助漂亮的素采纳,获得10
2秒前
江海寄馀生完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
YJS关闭了YJS文献求助
3秒前
ding应助syrrr要发文章采纳,获得10
4秒前
baochao完成签到 ,获得积分10
4秒前
是然发布了新的文献求助10
4秒前
科研通AI5应助方星采纳,获得10
4秒前
4秒前
4秒前
柳白发布了新的文献求助10
4秒前
永不阴性发布了新的文献求助10
5秒前
李凤凤发布了新的文献求助30
5秒前
mikefei完成签到,获得积分10
5秒前
科研通AI5应助流萤采纳,获得10
6秒前
7秒前
在水一方应助tch采纳,获得10
8秒前
8秒前
fuyuhaoy完成签到,获得积分10
9秒前
你好包包发布了新的文献求助10
9秒前
9秒前
汉堡包应助晶莹黎采纳,获得10
9秒前
哦哦哦发布了新的文献求助10
9秒前
Yyy完成签到,获得积分10
10秒前
柳白完成签到,获得积分10
10秒前
脑洞疼应助结实的保温杯采纳,获得10
10秒前
闪闪的夏之完成签到,获得积分10
11秒前
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663432
求助须知:如何正确求助?哪些是违规求助? 3223996
关于积分的说明 9754408
捐赠科研通 2933862
什么是DOI,文献DOI怎么找? 1606458
邀请新用户注册赠送积分活动 758497
科研通“疑难数据库(出版商)”最低求助积分说明 734836