子网
计算机科学
图像(数学)
人工智能
水准点(测量)
生成对抗网络
对抗制
模式识别(心理学)
样品(材料)
弹丸
转化(遗传学)
生成语法
一次性
编码(集合论)
克罗内克三角洲
匹配(统计)
数学
地理
量子力学
大地测量学
计算机安全
色谱法
程序设计语言
生物化学
统计
化学
有机化学
集合(抽象数据类型)
机械工程
基因
工程类
物理
作者
Yan Hong,Li Niu,Jianfu Zhang,Jing Liang,Liqing Zhang
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:2
标识
DOI:10.48550/arxiv.2207.10271
摘要
Learning to generate new images for a novel category based on only a few images, named as few-shot image generation, has attracted increasing research interest. Several state-of-the-art works have yielded impressive results, but the diversity is still limited. In this work, we propose a novel Delta Generative Adversarial Network (DeltaGAN), which consists of a reconstruction subnetwork and a generation subnetwork. The reconstruction subnetwork captures intra-category transformation, i.e., delta, between same-category pairs. The generation subnetwork generates sample-specific delta for an input image, which is combined with this input image to generate a new image within the same category. Besides, an adversarial delta matching loss is designed to link the above two subnetworks together. Extensive experiments on six benchmark datasets demonstrate the effectiveness of our proposed method. Our code is available at https://github.com/bcmi/DeltaGAN-Few-Shot-Image-Generation.
科研通智能强力驱动
Strongly Powered by AbleSci AI