胚胎发生
体细胞
胚胎
转化(遗传学)
生物
突变体
转基因
细胞生物学
百合
胚胎发生
基因
遗传学
植物
作者
Shengli Song,Rui Yan,Chunxia Wang,Jinxia Wang,Hongmei Sun
摘要
Auxin transport mediates the asymmetric distribution of auxin that determines the fate of cell development. Agrobacterium-mediated genetic transformation is an important technical means to study gene function. Our previous study showed that the expression levels of LpABCB21 and LpPILS7 are significantly up-regulated in the somatic embryogenesis (SE) of Lilium pumilum DC. Fisch. (L. pumilum), but the functions of both genes remain unclear. Here, the genetic transformation technology previously developed by our team based on the L.pumilum system was improved, and the genetic transformation efficiency increased by 5.7–13.0%. Use of overexpression and CRISPR/Cas9 technology produced three overexpression and seven mutant lines of LpABCB21, and seven overexpression and six mutant lines of LpPILS7. Analysis of the differences in somatic embryo induction of transgenic lines confirmed that LpABCB21 regulates the early formation of the somatic embryo; however, excessive expression level of LpABCB21 inhibits somatic embryo induction efficiency. LpPILS7 mainly regulates somatic embryo induction efficiency. This study provides a more efficient method of genetic transformation of L. pumilum. LpABCB21 and LpPILS7 are confirmed to have important regulatory roles in L. pumilum SE thus laying the foundation for subsequent studies of the molecular mechanism of Lilium SE.
科研通智能强力驱动
Strongly Powered by AbleSci AI