Highly undersampled magnetic resonance imaging reconstruction using autoencoding priors

欠采样 先验概率 计算机科学 自编码 迭代重建 梯度下降 人工智能 压缩传感 算法 降噪 杠杆(统计) 噪音(视频) 维数(图论) 模式识别(心理学) 人工神经网络 图像(数学) 数学 贝叶斯概率 纯数学
作者
Qiegen Liu,Qing Yang,Huitao Cheng,Rongpin Wang,Minghui Zhang,Dong Liang
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:83 (1): 322-336 被引量:49
标识
DOI:10.1002/mrm.27921
摘要

Purpose Although recent deep learning methodologies have shown promising results in fast MR imaging, how to explore it to learn an explicit prior and leverage it into the observation constraint is still desired. Methods A denoising autoencoder (DAE) network is leveraged as an explicit prior to address the highly undersampling MR image reconstruction problem. First, inspired by the observation that the prior information learned from high‐dimension signals is more effective than that from the low‐dimension counterpart in image restoration tasks, we train the network in a multichannel scenario and apply the learned network to single‐channel image reconstruction by a variables augmentation technique. Second, because of the fact that multiple implementations of artificial noise generation in DAE favors a better underlying result, we introduce a 2‐sigma rule to complement each other for improving the final reconstruction. The whole algorithm is tackled by proximal gradient descent. Results Experimental results under varying sampling trajectories and acceleration factors consistently demonstrate the superiority of the enhanced autoencoding priors, in terms of peak signal‐to‐noise ratio, structural similarity, and high‐frequency error norm. Conclusion A simple and effective way to incorporate the DAE prior into highly undersampling MR reconstruction is proposed. Once the DAE prior is obtained, it can be applied to the reconstruction tasks with different sampling trajectories and acceleration factors, and achieves superior performance in comparison with state‐of‐the‐art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mkljl完成签到 ,获得积分10
2秒前
科研通AI5应助LYF采纳,获得10
3秒前
直率火车发布了新的文献求助10
3秒前
科研通AI5应助SHENZH采纳,获得10
3秒前
大个应助1s采纳,获得10
4秒前
BY发布了新的文献求助10
4秒前
科研通AI2S应助zzz采纳,获得10
4秒前
朴实听云完成签到,获得积分20
5秒前
5秒前
6秒前
Patty发布了新的文献求助10
6秒前
6秒前
6秒前
qiaoqiao完成签到,获得积分20
7秒前
7秒前
Hello应助believe采纳,获得10
8秒前
pcm完成签到 ,获得积分10
9秒前
劲秉应助划水小舟采纳,获得30
9秒前
甜甜语堂完成签到,获得积分20
10秒前
篱落发布了新的文献求助10
10秒前
10秒前
如常发布了新的文献求助10
10秒前
深情安青应助林lin采纳,获得10
11秒前
LANER发布了新的文献求助10
11秒前
11秒前
smile完成签到,获得积分10
12秒前
ding应助寒冷天亦采纳,获得10
15秒前
华仔应助YEFEIeee采纳,获得10
16秒前
Ava应助BY采纳,获得10
17秒前
18秒前
科研通AI2S应助yy采纳,获得10
18秒前
顾矜应助喝到几点采纳,获得10
19秒前
20秒前
11111完成签到,获得积分10
22秒前
来一杯纯牛奶应助Dream采纳,获得10
23秒前
111发布了新的文献求助10
23秒前
23秒前
圆圆发布了新的文献求助10
23秒前
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475635
求助须知:如何正确求助?哪些是违规求助? 3067483
关于积分的说明 9104253
捐赠科研通 2758983
什么是DOI,文献DOI怎么找? 1513845
邀请新用户注册赠送积分活动 699843
科研通“疑难数据库(出版商)”最低求助积分说明 699197