Robust and Accurate Step Counting Based on Motion Mode Recognition for Pedestrian Indoor Positioning Using a Smartphone

计算机科学 稳健性(进化) 人工智能 支持向量机 计算机视觉 特征提取 模式识别(心理学) 行人 阶跃检测 波峰系数 工程类 带宽(计算) 生物化学 基因 滤波器(信号处理) 计算机网络 运输工程 化学
作者
Xuan Wang,Guoliang Chen,Xiaoxiang Cao,Zhenghua Zhang,Mengyi Yang,Saizhou Jin
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (6): 4893-4907 被引量:17
标识
DOI:10.1109/jsen.2021.3058127
摘要

Robust and accurate step counting plays an essential role in some fields, such as indoor positing, behavior recognition, and health management. Currently, there are numerous applications or methods in step counting. However, most solutions did not emphasize the elimination of false steps in the non-walking state, which still encounters the over-counting or under-counting problem. In this study, a robust and accurate step counting solution based on movement mode recognition is proposed. First, according to the characteristics of pedestrians walking, the SVM and FSM-DT classifiers were constructed to recognize the user's motion state and phone usage mode, respectively. The purpose of classification is to solve the step-counting error of non-walking state and initialize a suitable parameter for different cases. Then, we utilized a crest-valley detection algorithm with multi-feature constrained to detect the step, and the initial threshold values for each mode can be adjusted adaptively during walking. The results indicate that the accuracy of the proposed method can reach 99.11% and 97.43% in normal and free walking. Compared with standard peak detection and an excellent method, the proposed method can improve by 44.14% and 18.71% for false walking, respectively, which is a significant improvement in the robustness and accuracy. Furthermore, we also achieve an average accuracy higher than 98% in some typically carrying modes and ways, and higher accuracy compared with four popular step-counting mobile applications in different walking states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼叮叮完成签到,获得积分10
1秒前
2秒前
halo发布了新的文献求助10
3秒前
哈哈哈完成签到,获得积分10
4秒前
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
5秒前
hardworkcd应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
top完成签到 ,获得积分10
5秒前
6秒前
zhong发布了新的文献求助10
7秒前
YangyangLiu完成签到,获得积分10
8秒前
8秒前
嘎嘎发发布了新的文献求助10
9秒前
小小完成签到 ,获得积分10
9秒前
聆(*^_^*)发布了新的文献求助10
10秒前
10秒前
大娱乐家发布了新的文献求助10
13秒前
Darknewnew发布了新的文献求助30
14秒前
阿飞完成签到,获得积分10
14秒前
16秒前
不驯完成签到 ,获得积分0
18秒前
上官若男应助Mr_老旭采纳,获得10
19秒前
可耐的思远完成签到 ,获得积分10
20秒前
爆米花应助大娱乐家采纳,获得100
20秒前
23秒前
英姑应助Darknewnew采纳,获得10
25秒前
Lucas应助yuanzhilong采纳,获得10
25秒前
25秒前
张涵发布了新的文献求助10
27秒前
DXY完成签到,获得积分10
28秒前
旭a完成签到,获得积分20
33秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Standard Specification for Polyolefin Chopped Strands for Use in Concrete 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416935
求助须知:如何正确求助?哪些是违规求助? 3018754
关于积分的说明 8884993
捐赠科研通 2705969
什么是DOI,文献DOI怎么找? 1484010
科研通“疑难数据库(出版商)”最低求助积分说明 685870
邀请新用户注册赠送积分活动 681074