亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Potential applications of deep learning in single-cell RNA sequencing analysis for cell therapy and regenerative medicine

诱导多能干细胞 转录组 细胞生物学 单细胞测序 核糖核酸 精密医学 细胞分化 单细胞分析
作者
Ruojin Yan,Chunmei Fan,Zi Yin,Ting-zhang Wang,Xiao Chen
出处
期刊:Stem Cells [Wiley]
卷期号:39 (5): 511-521 被引量:3
标识
DOI:10.1002/stem.3336
摘要

When used in cell therapy and regenerative medicine strategies, stem cells have potential to treat many previously incurable diseases. However, current application methods using stem cells are underdeveloped, as these cells are used directly regardless of their culture medium and subgroup. For example, when using mesenchymal stem cells (MSCs) in cell therapy, researchers do not consider their source and culture method nor their application angle and function (soft tissue regeneration, hard tissue regeneration, suppression of immune function, or promotion of immune function). By combining machine learning methods (such as deep learning) with data sets obtained through single-cell RNA sequencing (scRNA-seq) technology, we can discover the hidden structure of these cells, predict their effects more accurately, and effectively use subpopulations with differentiation potential for stem cell therapy. scRNA-seq technology has changed the study of transcription, because it can express single-cell genes with single-cell anatomical resolution. However, this powerful technology is sensitive to biological and technical noise. The subsequent data analysis can be computationally difficult for a variety of reasons, such as denoising single cell data, reducing dimensionality, imputing missing values, and accounting for the zero-inflated nature. In this review, we discussed how deep learning methods combined with scRNA-seq data for research, how to interpret scRNA-seq data in more depth, improve the follow-up analysis of stem cells, identify potential subgroups, and promote the implementation of cell therapy and regenerative medicine measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助吴彦祖采纳,获得10
1秒前
5秒前
李健应助吴彦祖采纳,获得10
23秒前
25秒前
月军完成签到,获得积分10
38秒前
热情鹤发布了新的文献求助10
40秒前
44秒前
斯文败类应助吴彦祖采纳,获得10
47秒前
热情鹤完成签到,获得积分10
55秒前
59秒前
1分钟前
烟花应助zzz采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
11111发布了新的文献求助10
1分钟前
852应助吴彦祖采纳,获得10
1分钟前
11111完成签到,获得积分20
1分钟前
1分钟前
充电宝应助吴彦祖采纳,获得10
1分钟前
星辰大海应助皮卡丘采纳,获得20
1分钟前
李小猫完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zzz发布了新的文献求助10
1分钟前
Drhhhfff完成签到,获得积分10
2分钟前
打打应助吴彦祖采纳,获得10
2分钟前
2分钟前
yangguang2000应助李小猫采纳,获得10
2分钟前
慕青应助吴彦祖采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
keke完成签到 ,获得积分10
3分钟前
3分钟前
李健应助吴彦祖采纳,获得10
3分钟前
慕青应助薄饼哥丶采纳,获得10
3分钟前
皮卡丘发布了新的文献求助20
3分钟前
3分钟前
坚强的广山完成签到,获得积分0
3分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261524
求助须知:如何正确求助?哪些是违规求助? 2902334
关于积分的说明 8319593
捐赠科研通 2572232
什么是DOI,文献DOI怎么找? 1397469
科研通“疑难数据库(出版商)”最低求助积分说明 653733
邀请新用户注册赠送积分活动 632240