Potential applications of deep learning in single-cell RNA sequencing analysis for cell therapy and regenerative medicine

诱导多能干细胞 转录组 细胞生物学 单细胞测序 核糖核酸 精密医学 细胞分化 单细胞分析
作者
Ruojin Yan,Chunmei Fan,Zi Yin,Ting-zhang Wang,Xiao Chen
出处
期刊:Stem Cells [Wiley]
卷期号:39 (5): 511-521 被引量:3
标识
DOI:10.1002/stem.3336
摘要

When used in cell therapy and regenerative medicine strategies, stem cells have potential to treat many previously incurable diseases. However, current application methods using stem cells are underdeveloped, as these cells are used directly regardless of their culture medium and subgroup. For example, when using mesenchymal stem cells (MSCs) in cell therapy, researchers do not consider their source and culture method nor their application angle and function (soft tissue regeneration, hard tissue regeneration, suppression of immune function, or promotion of immune function). By combining machine learning methods (such as deep learning) with data sets obtained through single-cell RNA sequencing (scRNA-seq) technology, we can discover the hidden structure of these cells, predict their effects more accurately, and effectively use subpopulations with differentiation potential for stem cell therapy. scRNA-seq technology has changed the study of transcription, because it can express single-cell genes with single-cell anatomical resolution. However, this powerful technology is sensitive to biological and technical noise. The subsequent data analysis can be computationally difficult for a variety of reasons, such as denoising single cell data, reducing dimensionality, imputing missing values, and accounting for the zero-inflated nature. In this review, we discussed how deep learning methods combined with scRNA-seq data for research, how to interpret scRNA-seq data in more depth, improve the follow-up analysis of stem cells, identify potential subgroups, and promote the implementation of cell therapy and regenerative medicine measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
糖豆完成签到,获得积分20
1秒前
快乐的画笔完成签到 ,获得积分10
3秒前
一棵树完成签到,获得积分10
3秒前
玛斯特尔发布了新的文献求助10
3秒前
4秒前
显隐发布了新的文献求助10
5秒前
5秒前
5秒前
兜有米完成签到,获得积分10
5秒前
Owen应助猪肉超人菜婴蚊采纳,获得10
6秒前
研友_VZG7GZ应助冷酷海安采纳,获得10
7秒前
会飞的鱼发布了新的文献求助10
7秒前
晚风将近发布了新的文献求助10
7秒前
斯文小白菜完成签到 ,获得积分10
7秒前
李爱国应助寒树采纳,获得10
7秒前
ding应助坚强的笑天采纳,获得10
7秒前
8秒前
wangbq完成签到 ,获得积分10
8秒前
共享精神应助小刘同学采纳,获得10
9秒前
王尧完成签到,获得积分10
9秒前
zrz完成签到,获得积分10
10秒前
10秒前
嬴渠梁发布了新的文献求助30
10秒前
10秒前
NexusExplorer应助糟糕的访梦采纳,获得10
10秒前
dawn完成签到,获得积分10
10秒前
11秒前
大大大发布了新的文献求助10
11秒前
风之圣痕完成签到,获得积分10
11秒前
王尧发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
执着的玉米完成签到,获得积分20
14秒前
意羡完成签到,获得积分10
15秒前
小蘑菇应助兔宝宝采纳,获得10
15秒前
15秒前
15秒前
15秒前
大大大完成签到,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742911
求助须知:如何正确求助?哪些是违规求助? 5411336
关于积分的说明 15346296
捐赠科研通 4883960
什么是DOI,文献DOI怎么找? 2625453
邀请新用户注册赠送积分活动 1574294
关于科研通互助平台的介绍 1531234