Potential applications of deep learning in single-cell RNA sequencing analysis for cell therapy and regenerative medicine

诱导多能干细胞 转录组 细胞生物学 单细胞测序 核糖核酸 精密医学 细胞分化 单细胞分析
作者
Ruojin Yan,Chunmei Fan,Zi Yin,Ting-zhang Wang,Xiao Chen
出处
期刊:Stem Cells [Wiley]
卷期号:39 (5): 511-521 被引量:3
标识
DOI:10.1002/stem.3336
摘要

When used in cell therapy and regenerative medicine strategies, stem cells have potential to treat many previously incurable diseases. However, current application methods using stem cells are underdeveloped, as these cells are used directly regardless of their culture medium and subgroup. For example, when using mesenchymal stem cells (MSCs) in cell therapy, researchers do not consider their source and culture method nor their application angle and function (soft tissue regeneration, hard tissue regeneration, suppression of immune function, or promotion of immune function). By combining machine learning methods (such as deep learning) with data sets obtained through single-cell RNA sequencing (scRNA-seq) technology, we can discover the hidden structure of these cells, predict their effects more accurately, and effectively use subpopulations with differentiation potential for stem cell therapy. scRNA-seq technology has changed the study of transcription, because it can express single-cell genes with single-cell anatomical resolution. However, this powerful technology is sensitive to biological and technical noise. The subsequent data analysis can be computationally difficult for a variety of reasons, such as denoising single cell data, reducing dimensionality, imputing missing values, and accounting for the zero-inflated nature. In this review, we discussed how deep learning methods combined with scRNA-seq data for research, how to interpret scRNA-seq data in more depth, improve the follow-up analysis of stem cells, identify potential subgroups, and promote the implementation of cell therapy and regenerative medicine measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLM完成签到,获得积分10
1秒前
ss发布了新的文献求助10
1秒前
跳跃完成签到,获得积分10
1秒前
jksg发布了新的文献求助10
2秒前
打打应助熙可檬采纳,获得10
3秒前
3秒前
传奇3应助pure采纳,获得10
4秒前
彩色的曼柔完成签到 ,获得积分10
4秒前
enen发布了新的文献求助10
4秒前
魔幻的翠容完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
坦率的香烟完成签到,获得积分10
6秒前
6秒前
funkii完成签到,获得积分10
7秒前
领导范儿应助向北采纳,获得10
7秒前
jiaxingwei发布了新的文献求助10
7秒前
LHL完成签到,获得积分20
7秒前
8秒前
123发布了新的文献求助10
8秒前
9秒前
西貝发布了新的文献求助10
9秒前
CodeCraft应助朴实的南露采纳,获得10
9秒前
情怀应助xxaqs采纳,获得10
9秒前
李爱国应助nieziyun采纳,获得10
9秒前
领导范儿应助wuran采纳,获得10
9秒前
龙凌音完成签到,获得积分10
10秒前
10秒前
zhou完成签到,获得积分20
10秒前
11秒前
Raskye完成签到,获得积分10
11秒前
先生范发布了新的文献求助10
11秒前
MWSURE完成签到,获得积分10
11秒前
Ashley完成签到,获得积分10
11秒前
11秒前
LYSM发布了新的文献求助10
11秒前
大胆听莲完成签到 ,获得积分10
11秒前
FlipFlops发布了新的文献求助10
12秒前
烟花应助科研通管家采纳,获得20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320