Potential applications of deep learning in single-cell RNA sequencing analysis for cell therapy and regenerative medicine

诱导多能干细胞 转录组 细胞生物学 单细胞测序 核糖核酸 精密医学 细胞分化 单细胞分析
作者
Ruojin Yan,Chunmei Fan,Zi Yin,Ting-zhang Wang,Xiao Chen
出处
期刊:Stem Cells [Oxford University Press]
卷期号:39 (5): 511-521 被引量:3
标识
DOI:10.1002/stem.3336
摘要

When used in cell therapy and regenerative medicine strategies, stem cells have potential to treat many previously incurable diseases. However, current application methods using stem cells are underdeveloped, as these cells are used directly regardless of their culture medium and subgroup. For example, when using mesenchymal stem cells (MSCs) in cell therapy, researchers do not consider their source and culture method nor their application angle and function (soft tissue regeneration, hard tissue regeneration, suppression of immune function, or promotion of immune function). By combining machine learning methods (such as deep learning) with data sets obtained through single-cell RNA sequencing (scRNA-seq) technology, we can discover the hidden structure of these cells, predict their effects more accurately, and effectively use subpopulations with differentiation potential for stem cell therapy. scRNA-seq technology has changed the study of transcription, because it can express single-cell genes with single-cell anatomical resolution. However, this powerful technology is sensitive to biological and technical noise. The subsequent data analysis can be computationally difficult for a variety of reasons, such as denoising single cell data, reducing dimensionality, imputing missing values, and accounting for the zero-inflated nature. In this review, we discussed how deep learning methods combined with scRNA-seq data for research, how to interpret scRNA-seq data in more depth, improve the follow-up analysis of stem cells, identify potential subgroups, and promote the implementation of cell therapy and regenerative medicine measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁紫翠完成签到,获得积分10
刚刚
Zel博博完成签到,获得积分10
刚刚
雪婆发布了新的文献求助10
刚刚
1秒前
亚琳完成签到,获得积分10
2秒前
旭宝儿发布了新的文献求助10
2秒前
云&fudong完成签到,获得积分10
3秒前
余生发布了新的文献求助10
3秒前
天道酬勤完成签到,获得积分10
3秒前
研友_Y59785应助无限的依波采纳,获得10
3秒前
3秒前
暗能量完成签到,获得积分10
4秒前
Li猪猪完成签到,获得积分10
4秒前
saluo完成签到,获得积分10
4秒前
luiii完成签到,获得积分10
4秒前
wse完成签到,获得积分10
5秒前
如意雅山发布了新的文献求助10
6秒前
6秒前
chenlike完成签到,获得积分10
6秒前
6秒前
Nuyoah完成签到 ,获得积分10
7秒前
panjunlu完成签到,获得积分10
7秒前
7秒前
李小新完成签到 ,获得积分10
7秒前
Ava应助木亢王足各采纳,获得10
8秒前
wushangyu发布了新的文献求助10
8秒前
完美世界应助Gj采纳,获得10
8秒前
9秒前
是真的完成签到 ,获得积分10
9秒前
苏silence发布了新的文献求助10
9秒前
gnr2000发布了新的文献求助10
10秒前
优雅盼海发布了新的文献求助10
10秒前
眯眯眼的海完成签到,获得积分10
11秒前
爆米花应助CQ采纳,获得10
11秒前
斯文败类应助snowdrift采纳,获得10
11秒前
gggja完成签到,获得积分10
11秒前
12秒前
打打应助decademe采纳,获得10
12秒前
yongziwu完成签到,获得积分10
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582