已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Potential applications of deep learning in single-cell RNA sequencing analysis for cell therapy and regenerative medicine

诱导多能干细胞 转录组 细胞生物学 单细胞测序 核糖核酸 精密医学 细胞分化 单细胞分析
作者
Ruojin Yan,Chunmei Fan,Zi Yin,Ting-zhang Wang,Xiao Chen
出处
期刊:Stem Cells [Wiley]
卷期号:39 (5): 511-521 被引量:3
标识
DOI:10.1002/stem.3336
摘要

When used in cell therapy and regenerative medicine strategies, stem cells have potential to treat many previously incurable diseases. However, current application methods using stem cells are underdeveloped, as these cells are used directly regardless of their culture medium and subgroup. For example, when using mesenchymal stem cells (MSCs) in cell therapy, researchers do not consider their source and culture method nor their application angle and function (soft tissue regeneration, hard tissue regeneration, suppression of immune function, or promotion of immune function). By combining machine learning methods (such as deep learning) with data sets obtained through single-cell RNA sequencing (scRNA-seq) technology, we can discover the hidden structure of these cells, predict their effects more accurately, and effectively use subpopulations with differentiation potential for stem cell therapy. scRNA-seq technology has changed the study of transcription, because it can express single-cell genes with single-cell anatomical resolution. However, this powerful technology is sensitive to biological and technical noise. The subsequent data analysis can be computationally difficult for a variety of reasons, such as denoising single cell data, reducing dimensionality, imputing missing values, and accounting for the zero-inflated nature. In this review, we discussed how deep learning methods combined with scRNA-seq data for research, how to interpret scRNA-seq data in more depth, improve the follow-up analysis of stem cells, identify potential subgroups, and promote the implementation of cell therapy and regenerative medicine measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
100发布了新的文献求助20
1秒前
2秒前
田様应助认真盼曼采纳,获得10
2秒前
123完成签到,获得积分10
5秒前
ljx发布了新的文献求助10
5秒前
哎呦喂完成签到,获得积分10
6秒前
舒心星星发布了新的文献求助10
8秒前
8秒前
英俊的铭应助shi hui采纳,获得10
8秒前
9秒前
自然的乌龟完成签到 ,获得积分10
10秒前
cyw完成签到,获得积分10
11秒前
爆米花应助D515采纳,获得80
12秒前
Cullen发布了新的文献求助10
12秒前
12秒前
13秒前
接受所有小饼干完成签到 ,获得积分10
13秒前
就是你啦发布了新的文献求助10
14秒前
大家好完成签到 ,获得积分10
15秒前
所所应助xxdn采纳,获得10
17秒前
所所应助聿彧屿采纳,获得10
17秒前
18秒前
19秒前
20秒前
21秒前
小蘑菇应助文慧采纳,获得10
24秒前
杰杰发布了新的文献求助10
24秒前
24秒前
ooorraee完成签到,获得积分10
24秒前
xxdn发布了新的文献求助10
26秒前
27秒前
28秒前
wuhuwuhu完成签到 ,获得积分10
28秒前
30秒前
风趣惜灵发布了新的文献求助10
32秒前
科研通AI6.1应助shi hui采纳,获得10
33秒前
Yule发布了新的文献求助30
34秒前
34秒前
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938