Potential applications of deep learning in single-cell RNA sequencing analysis for cell therapy and regenerative medicine

诱导多能干细胞 转录组 细胞生物学 单细胞测序 核糖核酸 精密医学 细胞分化 单细胞分析
作者
Ruojin Yan,Chunmei Fan,Zi Yin,Ting-zhang Wang,Xiao Chen
出处
期刊:Stem Cells [Wiley]
卷期号:39 (5): 511-521 被引量:3
标识
DOI:10.1002/stem.3336
摘要

When used in cell therapy and regenerative medicine strategies, stem cells have potential to treat many previously incurable diseases. However, current application methods using stem cells are underdeveloped, as these cells are used directly regardless of their culture medium and subgroup. For example, when using mesenchymal stem cells (MSCs) in cell therapy, researchers do not consider their source and culture method nor their application angle and function (soft tissue regeneration, hard tissue regeneration, suppression of immune function, or promotion of immune function). By combining machine learning methods (such as deep learning) with data sets obtained through single-cell RNA sequencing (scRNA-seq) technology, we can discover the hidden structure of these cells, predict their effects more accurately, and effectively use subpopulations with differentiation potential for stem cell therapy. scRNA-seq technology has changed the study of transcription, because it can express single-cell genes with single-cell anatomical resolution. However, this powerful technology is sensitive to biological and technical noise. The subsequent data analysis can be computationally difficult for a variety of reasons, such as denoising single cell data, reducing dimensionality, imputing missing values, and accounting for the zero-inflated nature. In this review, we discussed how deep learning methods combined with scRNA-seq data for research, how to interpret scRNA-seq data in more depth, improve the follow-up analysis of stem cells, identify potential subgroups, and promote the implementation of cell therapy and regenerative medicine measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻的夏波应助Guangdi_xu采纳,获得10
1秒前
BJYX发布了新的文献求助10
2秒前
领导范儿应助丘奇采纳,获得10
3秒前
张张发布了新的文献求助20
4秒前
4秒前
胖子发布了新的文献求助10
5秒前
7秒前
甜蜜骁发布了新的文献求助10
7秒前
7秒前
大个应助Spiner采纳,获得10
8秒前
9秒前
123发布了新的文献求助10
9秒前
裴翰完成签到,获得积分10
9秒前
10秒前
11秒前
Cx完成签到,获得积分10
11秒前
慕青应助yoyo采纳,获得10
12秒前
万能图书馆应助lili采纳,获得30
12秒前
故里完成签到,获得积分10
13秒前
Hello应助Hang采纳,获得10
13秒前
Ava应助大力的诗蕾采纳,获得150
13秒前
洵音完成签到,获得积分10
13秒前
13秒前
13秒前
啵宝发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
Riley完成签到,获得积分10
16秒前
17秒前
bsf123完成签到,获得积分10
17秒前
Tigher完成签到,获得积分10
17秒前
Cx发布了新的文献求助10
17秒前
科研宝发布了新的文献求助10
18秒前
18秒前
脑洞疼应助胖子采纳,获得10
20秒前
20秒前
hohokuz发布了新的文献求助30
21秒前
湫若白完成签到 ,获得积分10
22秒前
prode发布了新的文献求助10
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594565
求助须知:如何正确求助?哪些是违规求助? 4680238
关于积分的说明 14813737
捐赠科研通 4647610
什么是DOI,文献DOI怎么找? 2535063
邀请新用户注册赠送积分活动 1503074
关于科研通互助平台的介绍 1469521