Potential applications of deep learning in single-cell RNA sequencing analysis for cell therapy and regenerative medicine

诱导多能干细胞 转录组 细胞生物学 单细胞测序 核糖核酸 精密医学 细胞分化 单细胞分析
作者
Ruojin Yan,Chunmei Fan,Zi Yin,Ting-zhang Wang,Xiao Chen
出处
期刊:Stem Cells [Oxford University Press]
卷期号:39 (5): 511-521 被引量:3
标识
DOI:10.1002/stem.3336
摘要

When used in cell therapy and regenerative medicine strategies, stem cells have potential to treat many previously incurable diseases. However, current application methods using stem cells are underdeveloped, as these cells are used directly regardless of their culture medium and subgroup. For example, when using mesenchymal stem cells (MSCs) in cell therapy, researchers do not consider their source and culture method nor their application angle and function (soft tissue regeneration, hard tissue regeneration, suppression of immune function, or promotion of immune function). By combining machine learning methods (such as deep learning) with data sets obtained through single-cell RNA sequencing (scRNA-seq) technology, we can discover the hidden structure of these cells, predict their effects more accurately, and effectively use subpopulations with differentiation potential for stem cell therapy. scRNA-seq technology has changed the study of transcription, because it can express single-cell genes with single-cell anatomical resolution. However, this powerful technology is sensitive to biological and technical noise. The subsequent data analysis can be computationally difficult for a variety of reasons, such as denoising single cell data, reducing dimensionality, imputing missing values, and accounting for the zero-inflated nature. In this review, we discussed how deep learning methods combined with scRNA-seq data for research, how to interpret scRNA-seq data in more depth, improve the follow-up analysis of stem cells, identify potential subgroups, and promote the implementation of cell therapy and regenerative medicine measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xdd完成签到 ,获得积分10
1秒前
馒头完成签到 ,获得积分10
3秒前
3秒前
茶艺大师づ完成签到,获得积分10
3秒前
酷波er应助海蓝之心采纳,获得10
5秒前
zhong发布了新的文献求助10
5秒前
科研通AI6应助谦让可冥采纳,获得10
5秒前
5秒前
5秒前
5秒前
7秒前
小马甲应助Rn采纳,获得10
8秒前
钢铁狗头发布了新的文献求助10
8秒前
9秒前
伍秋望完成签到,获得积分10
9秒前
ASD发布了新的文献求助10
9秒前
超级玛丽完成签到,获得积分10
9秒前
核桃发布了新的文献求助10
11秒前
浮若安生完成签到,获得积分10
11秒前
好好学习发布了新的文献求助10
12秒前
可樂完成签到,获得积分10
12秒前
14秒前
zzz完成签到,获得积分10
15秒前
15秒前
ASD完成签到,获得积分10
16秒前
16秒前
酷波er应助dyfsj采纳,获得10
18秒前
18秒前
Weiyu完成签到 ,获得积分10
19秒前
海蓝之心发布了新的文献求助10
19秒前
20秒前
xiao发布了新的文献求助10
20秒前
choumaoo发布了新的文献求助10
20秒前
乾乾完成签到,获得积分10
21秒前
wuji2077完成签到,获得积分10
21秒前
22秒前
ava425发布了新的文献求助10
24秒前
露露子完成签到,获得积分10
25秒前
Eric发布了新的文献求助10
27秒前
yoke完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284222
求助须知:如何正确求助?哪些是违规求助? 4437791
关于积分的说明 13814979
捐赠科研通 4318770
什么是DOI,文献DOI怎么找? 2370598
邀请新用户注册赠送积分活动 1366003
关于科研通互助平台的介绍 1329460