The main role of thermal annealing in controlling the structural and optical properties of ITO thin film layer

材料科学 氧化铟锡 带隙 退火(玻璃) 透射率 薄板电阻 微晶 吸收边 薄膜 结晶 分析化学(期刊) 太阳能电池 光电子学 复合材料 图层(电子) 纳米技术 化学 冶金 有机化学 色谱法
作者
Moustafa Ahmed,Ahmed Bakry,Ammar Qasem,Hamed Dalir
出处
期刊:Optical Materials [Elsevier BV]
卷期号:113: 110866-110866 被引量:71
标识
DOI:10.1016/j.optmat.2021.110866
摘要

In this study, indium tin oxide (ITO) films (~350 nm) were prepared using the electron beam gun technology. Influence of thermal treatment of the films at a variety of temperatures on the structure and electrical and optical properties of the ITO films was studied. The XRD patterns were used to determine the structural parameters (lattice strain and crystallite size). The XRD results showed that the ITO films possess a cubic poly-crystalline structure and the characterized peak of diffraction intensity of the (222) plane increases dramatically in the post-annealing, which suggests a major improvement in the crystallization performance of the film being deposited. The electrical properties of the ITO films with different thicknesses were measured by the standard four-point probe method. It can be seen that the measured electrical properties refer to a decrease in the sheet resistance Rs (Ω/sq) with the increase in the annealing temperature. This means that the ITO films with lower electrical properties will be more appropriate for high-efficiency Cd/Te solar cells. In the higher absorption spectral regions of the transmittance and reflectance, the absorption coefficient was determined and the optical energy gap was calculated. The optical bandgaps of the studied ITO films have values increasing with the increase in the annealing temperature, showing a maximum value at 250 °C (3.72eV). The increase in the bandgap can be explained basing on the B-M effect. Finally, the (n and k) of the ITO films exhibited lowest values at 350 °C while the transmittance was highest, which emphasize that the ITO films are good transparent layers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀的之桃完成签到 ,获得积分10
2秒前
大雄发布了新的文献求助10
3秒前
Gang完成签到,获得积分10
9秒前
赵一丁完成签到,获得积分10
9秒前
大模型应助华无剑采纳,获得10
10秒前
和谐的醉山完成签到,获得积分10
11秒前
13秒前
15秒前
15秒前
饱满的棒棒糖完成签到 ,获得积分10
15秒前
潮汐发布了新的文献求助10
20秒前
共享精神应助Mason采纳,获得10
25秒前
村口的帅老头完成签到 ,获得积分10
25秒前
小杨完成签到,获得积分20
26秒前
邓紫棋完成签到,获得积分10
27秒前
木木完成签到,获得积分10
27秒前
拾石子完成签到 ,获得积分10
28秒前
郝富完成签到,获得积分10
32秒前
然4519完成签到 ,获得积分10
35秒前
dong完成签到 ,获得积分10
38秒前
木之尹完成签到 ,获得积分10
44秒前
45秒前
潮汐完成签到,获得积分10
46秒前
golden给golden的求助进行了留言
52秒前
Versa完成签到,获得积分10
52秒前
美合完成签到 ,获得积分10
53秒前
ty完成签到,获得积分10
54秒前
科研小白完成签到 ,获得积分10
56秒前
zyb完成签到 ,获得积分10
56秒前
副本完成签到 ,获得积分10
1分钟前
香锅不要辣完成签到 ,获得积分10
1分钟前
淡淡乐巧完成签到 ,获得积分10
1分钟前
cc完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助Cai采纳,获得10
1分钟前
Lenard Guma完成签到 ,获得积分10
1分钟前
直率翠绿完成签到,获得积分10
1分钟前
hgl发布了新的文献求助10
1分钟前
高高应助科研通管家采纳,获得10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674584
求助须知:如何正确求助?哪些是违规求助? 3229838
关于积分的说明 9787170
捐赠科研通 2940432
什么是DOI,文献DOI怎么找? 1611942
邀请新用户注册赠送积分活动 761063
科研通“疑难数据库(出版商)”最低求助积分说明 736488