AUV-Aided Localization for Underwater Acoustic Sensor Networks With Current Field Estimation

异步通信 水下 传播延迟 实时计算 节点(物理) 计算机科学 水声通信 水声学 声传感器 工程类 计算机网络 声学 结构工程 海洋学 物理 地质学
作者
Jing Yan,Dongbo Guo,Xiaoyuan Luo,Xinping Guan
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:69 (8): 8855-8870 被引量:45
标识
DOI:10.1109/tvt.2020.2996513
摘要

Accurate sensor localization is a crucial requirement for the deployment of underwater acoustic sensor networks (UASNs) in a large variety of applications. However, the asynchronous clock, stratification effect and mobility characteristics of underwater environment make it challenging to realize accurate node localization for UASNs. This paper develops an autonomous underwater vehicle (AUV) aided localization solution for UASNs, subjected to asynchronous clock, stratification effect and mobility constraints in cyber channels. A hybrid architecture including surface buoys, AUVs, active and passive sensor nodes, is first presented to construct a cooperative location-aware network. Then, an iterative least squares estimator is developed for AUVs to capture the unknown water current parameters, through which the relationship between propagation delay and location estimation can be established. With the assistance of AUVs, two asynchronous localization algorithms are designed to estimate the locations of active and passive sensor nodes. Particularly, motion and ray compensation strategies are jointly employed to improve the localization accuracy. It is worth noticing that, the proposed localization algorithms incorporate the current field estimation into the localization process of UASNs, and more importantly, they can eliminate the influences of asynchronous clock, stratification effect and node mobility together. Moreover, performance analyses for the proposed localization solution are also presented. Finally, simulation and experimental results reveal that the node localization accuracy in this paper can be significantly improved as compared with the other works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二二二发布了新的文献求助10
1秒前
FashionBoy应助懦弱的幼枫采纳,获得10
1秒前
2秒前
2秒前
2秒前
3秒前
adadad完成签到,获得积分10
4秒前
Hello应助碧蓝的白昼采纳,获得10
4秒前
在水一方应助科研辣鸡zzz采纳,获得10
4秒前
芋芋完成签到,获得积分10
4秒前
FDY发布了新的文献求助10
4秒前
血月完成签到,获得积分20
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
zho应助科研通管家采纳,获得30
5秒前
情怀应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
6秒前
神说应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
睿智番茄应助科研通管家采纳,获得10
6秒前
moose应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
6秒前
CipherSage应助lizi采纳,获得10
6秒前
野性的柠檬应助666采纳,获得10
7秒前
斯文问旋完成签到,获得积分10
7秒前
7秒前
7秒前
wz完成签到,获得积分10
7秒前
完美世界应助Sor采纳,获得10
7秒前
朱白发布了新的文献求助10
7秒前
8秒前
lijieyuan发布了新的文献求助10
8秒前
源主儿应助开心的招牌采纳,获得10
10秒前
10秒前
田田完成签到 ,获得积分10
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313270
求助须知:如何正确求助?哪些是违规求助? 2945680
关于积分的说明 8526586
捐赠科研通 2621440
什么是DOI,文献DOI怎么找? 1433542
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650568